
Hi

es
SIM360: A S/360 SIMULATOR

Vftn. Arthur Mc Cray

MAC Technical Memorandum 30
V

May 1972

D D C

OCT 10 ISS

tsEinnE
B

This research was supported by the Advanced Research
Projects Agency of the Department of Defense under
ARPA Order No. 2095, and was monitored by ONR under
Contract No. N00014-70-A-0362-0006.

Massachusetts Institute of Technology

PROJECT MAC

Cambridge Massachusetts 02139

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA -R&D
(S» cufity clmttUicmtion ol tlile, body ol abalracl mnd Indexing annolaiion must be an'*rtd when Hi» overall report is clastilied)

ORIGINATING ACTIVITY (Corporal* author)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC
3 REPORT TITLE

SIM360: A S/360 SIMULATOR

2al. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb. GROUP

NONE

4 DESCRIPTIVE NOTES (Type ot report and 'nclustvr drlea)

INTERIM SCIENTIFIC REPORT
9 AUTHORISi (Flral nmm; middle Initial, lam name)

WM. ARTHUR MC CRAY

» REPORT DATE

OCTOBER 10, 1972
7«. TOTAL NO. OF PACES

117
76. NO. OF REFS

17
Sa. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBEH(S)

N00014-70-A-OJ62-0006
6. PROJECT NO. MAC-TM-30

9b. OTHER REPORT NOIS) (Any other numb»« Mat may be ajt/anao
Ihle report)

NONE

10. DISTRIBUTION STATEMENT

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

II. SUPPLEMENTARY NOTES

BACHELOR OF SCIENCE THESIS,
DEPARTMENT OF MECHANICAL
EWGIMEERIHG. MftY 1972

12. SPONSORING MILITARY ACflVITY

OFFICE Of!NAVAL RESEARCH

13. ABSTRACT

/N Modern, large-scale computer systems typically operate under the
control of an operating system or executive program, and reserve
for the exclusive use of the operating system a set of privileged
instructions, which the normal users may not issue. This very
necessary arrangement produces a problem of equipment availability
for those who wish to develop or investigate operating systems
programs, because such programs cannot be run as normal user jobs
under an executive program.

This thesis describes SIM360, a detailed simulator of a representa-
tive IBM S/360 computer which was written-to run student programs,
programs assigned as machine problems for a course in operating
systems. The simulator allows programs to issue all the privileged
instructions of the S/360, and thus provides a readily available tool
for the study of operating systems programs.^)-^

V
\

DD .FN0O"VM473
S/N 0102-014-6600

(PAGE 1)
UNCLASSIFIED
Security Claiilfication

UNCLASSIFIED

TScuftty CU««tflc>ttön"
1«,

K EV WORDS

360 simulator
-■

i/o programming

Interrupt processing

Teaching aid for programming

DD .'r,..1473 BACK)
(PAGE 2) //

UNCLASSIFIED
Security Classification

j4r

SIM360: A S/360 SIMULATOR

Wm. Arthur Mc Cray

MAC Technical Memorandum 30

May 1972

This research was supported by the Advanced Research
Projects Agency of the Department of Defense under
ARPA Order No. 2095, and was monitored by ONR under
Contract No. N00014-70-A-0362-0006.

Massachusetts Institute of Technology

PROJECT MAC

Cambridge Massachusetts 02139

SIM360: A S/360 SIMULATION

by

WM, ABTHUR Mc CRAY

Submitted to the Department of Mechanical Engineering
on May 12, 1972 in partial fulfillment of the requirements
for the degree of Bachelor of Science.

ABSTRACT

Modem, large-scale computer systems typically operate
under the control of an operating system or executive program,
and reserve for the exclusive use of the operating system a
set of privileged instructions, which the normal users may
not issue. This very necessary arrangement produces a prob-
lem of equipment availability for those who wish to develop
or investigate operating systems programs, because such
programs cannot be run as normal user Jobs under an execu-
tive program.

This thesis describes SIM360, a detailed simulator of
a representative IBM S/36O computer, vrhich was written to run
student programs, programs assigned as machine problems for
a course in operating systems. The simulator allows programs
to issue all of the priveleged instructions of the S/36O.
and thus provides a readily available tool for the study of
operating systems programs.

Thesis Supervisor: John J, Donovan
Title: Professor of Electrical Engineering

- 3 -

ACKNOWIEDGMENTS

The author wishes to express sincere appreciation to

Professor John Donovan and Mr. Stuart Madnick for their

suggestions, guidance, patience and encouragement, and par-

ticularly for the fact that the writing of SIM36O has been a

rewarding and truly educational experience.

The students of 6.802, Advanced Operating Systems, who

exhibited remarkable patience and a gentle insistence on

absolute accuracy, are due special thanks for their helpful

criticisms and faithful reporting of bugs.

Finally, to my incredibly patient and loving wife, typist

and helpmeet, I offer my profound gratitude for her constant

and irresistable encouragement and support.

- 4 -

TABLE OP CONTEMTS

1. INTHODUCTION paRe 7

2. DESCRIPTION OP SIM360 12

2.1 Advantages and Peatures 22

2.2 Configuration of the Simulated System 15

2.3 Structure of the Simulator j?

2 A Program Operation 20

3. PROGRAMMING TECHNIQUES 29

3.1 The Virtual Core Array

3.2 The Program Status Word

3.3 The Interrupt and Event Queue

3•1^• I/O Specification Blocks 21

4. CONCLUSIONS , 33
1

}

APPENDIX A : PROGRAMMING FOR THE S/3ß0 SIMULATOR 3^

29

30

30

3^

3^

39

A.l Introduction

A.2 Implemented Instructions

A.3 Preparing a Program

A A Input/Output Environment ^

A.5 Debugging Aids and Monitoring Peatures 42

A.6 Hints 53

APPENDIX B : INSTRUCTORS MANUAL 65

B.l Student Decks 55

B.2 Assembler Instructions 55

B,3 Simulator Instructions 57

- 5 -

APPENDIX C : GUIDE TO MAINTENANCE, MODIFICATION AND
HEPHOGHAMMING 75

C,l Overview

C.2 Module SIMLINK
75

76
C.3 Module SIMCFU 33

C,^ Module SIMIO or

C.5 Module TRACE 11:i

BIBLIOGRAPHY 117

- 6 -

LIST OP PIGUBES

1 : Simuljxted Hardware Configuration

2 : Simulator Structure and Data Flow

3 : Simulator Operation Overview

C-l : Parameter Processing

C-2 : Program Loading

C-3 : Instruction Interpretation

C-4 : Accessing the Virtual Core Array

C-5 : Alignment and Protection Checking

C-6 : Interrupt and Event Processing

C-7 : Simulation of HALT I/O

C-8 : Simulation of TEST I/O

C-9 : Channel Interpreter

C-10: Interrupt and Event Queue Entries

C-ll: Event Processing

C-12: EPS Command to Card Reader

C-13: Trace Macro Data

C-14: Trace Queue Entries

page 16

19

24

77

80

88

90

92

99

100

102

104

10?

109

113

114

yj

- 7 -

1. INTRODUCTION

A simulation of a system is normally undertaken to

provide a manipulatable model of the system for investi-

gation and study. In some cases the system being simulated

may not exist, or may be in a development stage, and thus

is unavailable for use. This would be the case with a

proposed mass transit system, for example, where the capa-

bilities and performance of the system must be carefully

evaluated before committing perhaps millions of dollars for

development. Another, and very frequent use of simulators

in this respect, is to provide the ability to develop the

hardware and software of a new computer system in parallel.

A simulator of the computer system, written to operate on

existing computer hardware, is used to develop and debug

the software for the computer before a working prototype

is completed, and in this way a large savings in total

system development time can be realized.

In other cases the simulated system may exist, but for

some reason be difficult or impossible to use for experi-

mentation. One cannot, in practice, block a traffic artery

in a major city to study the resulting flow of traffic,

or vary the mass of the moon to study the effect on the tide.

In much the same sense, a simulation of an existing computer

system can provide an important tool for research, develop-

- 8 -

ment, and teaching. Modem, large-scale computer systems

operate under the control of an operating system or exec-

utive program, and place definite restrictions on the op-

erations which may be performed by programs run on the

system. Typically, user programs may not use Instructions

which directly affect Input/output devices, protection

mechanisms, the Interrupt structure, and other basic as-

pects of the processor state. Because the operating system

provides user programs with Indirect methods of performing

operations with privileged facilities, most programs can

be run; however, operating system programs, that is, com-

plete programs which may issue any instruction implemented

by the computer, programs which in fact may be intended to

provide the indirect methods for performing privileged

operations, are excluded. For this large and Important

class of programs, then, the computer system is unavailable1

for testing or development. A simulator of the computer

system provides a solution to this basic problem, and offers

other substantial advantages as well.

In a relative sense. Manufacturers1 personnel and

software support staff members at large installations may

have access to a "bare-bones" system on a limited basis.

Most users, even systems programmers, never have this

opportunity on a large scale system, for obvious reasons

of efficiency and economy.

- 9 -

A simulator is not the only solution to this problem;

It Is, however, frequently the only practical one. The

obvious approach, somehow to obtain the desired computer

for exclusive use, has been mentioned, and Is clearly In-

convenient, Impractical, expensive, and not necessarily

sufficiently useful when It Is possible at all. Most

system programmers have encountered that maddening class of

program errors which exist, are perhaps regularly repeat-

able, but which do not occur when the CPU Is stepped through

the erroneous code one Instruction at a time. Similar

timing dependencies may exist In Input-output operations

of interest. Finally, the computer may not exist in the

desired configuration, if some particular feature or device

is desired for study.

Another method of running operating system programs

involves the use of a virtual machine, such as IBM's

CP-671 provides. The primary drawback in this approach is

the requirement that a very expensive and infrequently

available S/36O model 67 is required. In addition, the

virtual machine does not accurately reflect the timing

and behavior of the simulated computer in the area of I/O

Control Program-67/Cambrldge Monitor System User's

Guide. IBM Publication.

- 10 -

operations and privileged instructions. This is a fairly

serious drawback, since this area is the focus of interest

in operating systems programs,

A simulator, in contrast, offers the advantages

summarized below.

— Readily available to users

— Run complete programs

— Achieve any level of accuracy desired

— Incorporates comprehensive debugging aids

— Allows detailed performance monitoring

~ Arbitrary configuration - size, features, and

devices

— May be optimized for solution of probiem(s)

of interest

— Hay be readily modified - software program

A complete discussion of these points is postponed

to the following section, where they are covered in depth

as features of SIM36O. A simulator incorporating most

or all of these features is potentially useful for:

— Software development

~ Teaching tool - student runs

~ System testing of new versions of operating

system software

— Evaluation of different system configurations

- 11 -

—• Evaluation of new hardware

Software development is probably the most frequently

occurring reason for usjng a computer simulator. Most

development programs for new computer systems involve the

early implementation of a simulator for the reasons dis-

cussed above.

SIM360 was specifically written for use as a teaching

tool in a course in advanced operating systems, and has

been successfully used for two machine problems (to date)

in the current academic semester. The checkout of a new

vorsion of an operating system, or some component of it,

could be accomplished on a simulator without the necessity

for interrupting normal operations, bringing down the current

system, installing the new version, running the desired

tests, bringing down the new system, reinstalling the old

system, etc., etc., through many iterations of the testing

procedure. With some modification, perhaps, a simulator

could be used to evaluate the effects and operating char-

acteristics of totally new hardware in the form of new

devices, a more powerful system, or perhaps a completely

new system (transition from a S/36O to a S/370, for example).

Simulators have not been widely used in these last three

areas, but because it is a uniquely complete and accurate

simulation, SIM36O could be a powerful and useful tool

for systems work of this type.

- 12 -

2. DESCRIPTION OF SIM36O

SIM36O is a computer program written in PL/I which

simulates to a high degree of accuracy the behavior of a

representative member of the IBM 3/360 series of computer

systems. The simulator runs as a problem program under

OS/360 (or other operating system which supports PL/I),

implements the full complement of privileged instructions,

and provides very detailed and accurate simulation of the

basic I/O devices of the S/36O. It is specifically designed

to run student programs assigned as machine problems for a

course in operating systems, but provides a general solu-

tion to the problem of computer system availability dis-

cussed above.

2.1 ADVANTAGES AND FEATURES

All of the advantages of a simulator listed in Section 1

are incorporated in some measure in SIM36O. It is poten-

tially readily available to any user of the computer system

on which it is in use1, and could be made available on any

1 The IBM S/370-155 at MIT's Information Processing Center

11

- 13 -

S/360 or S/370 which supports the IBM S/36O operating system

and can provide a 200K user partition. Further, it could

be made available on any comparable large scale computer

system which supports PL/I, with approprlale, but probably

minor, modifications to the simulator cpde'. In one sense,

SIM360 can run complete programs; it'implements all of the

I/O and privileged instructions of the S/36O. The complete

instruction set is not implemented, but was not desired; the

simulator is specifically designed to run student assign-

ments emphasizing I/O programming, interrupt handling, and

other operating system techniques. An instruction subset

adequate for this purpose is provided.1

The level of accuracy of the simulation is as high

as could be reached using available documentation. In-

struction timings, for example, for those instructions which

have variable length operands, are adjusted to reflect the

length specified in the particular instruction being simu-

lated. I/O operations which result in data transfers by

the data channels on a cycle stealing basis are accurately

reflected.2 Interrupt timings are adjusted to account for

device characteristics such as clutch points (on card

1 i3ee Appendix A.

2 See Appendix C,

- 14 -

readers and card punches) and line spacing (on printers).

SIM36O Incorporates powerful and comprehensive de-

bugging aids. A program being executed by the simulator

may dynamically request diagnostic or program fV w informa-

tion to be printed by the simulator on the basis of a num-

ber of distinct conditions:

1) Successful branch

2) Reference to a particular address as an operand

3) Reference to a particular address for instruction

execution

Jf) Execution of a particular Instruction (by class,

i.e., Load or Multiply, not instance)

5) Occurrence of an Interrupt

6) Occurrence of significant channel activity

7) Occurrence of a dump request

All of these conditions may be dynamically set and reset

by the simulated program through the use of supplied macro

Instructions. Because the simulator, as implemented, is

not an interactive system, there are no breakpoint facil-

ities, or other very useful capabilities usually found in

Interactive debugging aids. Such features could, however,

be easily added to the simulator should it ever be desirable

1 See Appendix A

- 15 -

to use it in an interactive environment. The capabilities

provided for debugging also serve for performance monitor-

ing. All aspects of system performance may be selectively

examined through use of the features outlined,

SIM360 is specifically adapted for the use for which

it was written. It is being used to run student programs

for a relatively large class, and has many features which

are desirable for this use. For example, most of the options

discussed in Appendix B are provided to give the instructor

a measure of control over how much machine time and output

volume may be generated by student programs. To a limited

extent, the options also reflect the ability to choose an

arbitrary configuration for the system being simulated,

but, in general, achieving a truly arbitrary configurabion

is a matter which requires modification of the simulator

code,

2,2 CONFIGURATION OF THE SIMULATED SYSTEM

The simulated computer (see Figure 1) which SIM360

provides is a representative IBM S/36O with up to 32K bytes

of core storage,1 Up to six channels are available, although

at present only one, the byte multiplexor channel, has

attached devices. Two 282^control units are attached to

multiplexor channel 0, and' each 2821 services a 2540 cr.rd

1 This ridiculously small amount of core (for a S/36O) is

considerably more than adequate for student programs.

- 16 -

.

CPU

(cA.äwWVvt\ O J

(UftAfcr-?vxwvt\N

?r\wVeT

Figure 1 : Simulated Hardware Configuration

- 17 -

-

reader-punch and two IkOJ printers. No special features

are Implemented on the CPU or any device. Certain aspects

of the CPU are not simulated. The machine check interrupt

and diagnostic scan-out are not available, nor is the

operator^ console,1 At present, no direct access or tape

devices are available, but direct access capability for

2311 and 2314 type devices are under development and will

be available in the near future. Tap* facilities are a

possible, but not imminent, addition. This configuration

provides the ability to run systems programs which deal with

every phase of S/36O CPU operation except error detection,

and with card and printer I/O devices.

2,3 STRUCTURE OP THE SIMULATOR

SIM360 is a complete system for running student pro-

grams. As an overview of the simulator structure, a brief

description of how the simulator is utilized will be» given;

complete.detailed instructions for using the simulator

are given in Appendices A and B,

Students are assigned a problem and prepare their

programmed solutions in S/36O Basic Assembler Language,

1
The operators console might be a useful addition to

an interactive version of SIM36O,

- 18 -

Student decks are collected and grouped into one large

Input deck; appropriate control cards are added for the

operating system and SIM360. The entire assembled deck is

submitted as one batch run. When returned, student decks

are reseparated, and printed output of assembler listing,

simulator output, and simulator trace and diagnostic out-

put are assembled for each student and returned. Final

results after a series of runs are submitted by the student

for grading.

The simulator produces this overall result by first

assembling all of the student programs using the G level

assembler1 in batch mode. Object module output of the

asseEbler is held in a temporary file, which is the input

to the second (simulation) pass over the data. When all

student decks are assembled, the simulator proper is given

control•

The simulator consists of four major modules,2 The

first module, a very simple loader, reads the object

module output from the first (only) student deck and builds

an executable program in a reserved storage area. This

activity is entirely analagous to that of the S/36O Loaded.

1 This is a more efficient S/36O Assembler written at the

university of Waterloo.
2 See Figure 2,

3 IBM System/360 Operating System : Linkage Editor and

Loader, Form GC28-6538.

- 19 -

^XVAUXMK

SItACPU

CajreJl Xyv?v<.+

TK<\Cfc

StauXkH*.

^X^NNXO

Ca*tJ Ou,-V^u\

Figure 2 : Simulator Structure and Data Flow

- 20 -

When the program has been loaded, the CPU simulation module

Initiates system activity in a manner analagous to S/36O

Initial Progräm Loading. Thereafter, under the control of

the CPU simulator, the I/O simulation module and the trace

module, are invoked as required by the program, and the

simulated execution of the student program precedes until

it terminates, or until an unrecoverable error is detected.

Control then returns to the module SIMLINK, which loads

the next student program and reinitializes the simulation

process,

2.4 PROGRAM OPERATION

The simulator receives control from the operating system

in the module SIMLINK. First the parameters of the run are

processed,1 and then the first (or only) assembled student

program is loaded. When the program is loaded, the module

SIMCPU is called to simulate program execution. When SIMCPÜ

returns, SIMLINK loads the next program and continues in

this manner until all programs have been simulated.

The module SIMCPU performs some initialization, and

proceeds to simulate the execution of the program by using

the doubleword at simulated location zero as the initial

1 See Appendix B, section B.3.1 and Appendix C, section C.2.1,

- 21 -

program status word. Each instruction is simulated by a

small routine (typically four or five PL/I statements) which

does appropriate processing to implement the instruction.

After each instruction the elapsed time in the simulation

is updated, and a check for an interrupt or other special

condition is made. Interrupts may occur because the timer

decrements from zero to minus one, or because an appropriate

condition exists in the I/O subsystem. Other conditions

which are handled are data transfers between core storage

and I/O devices, I/O events,1and the special considerations

which arise when the CPU is in the wait state.

If in the course of instruction simulation the simu-

lator encounters a request that a trace condition be en-

abled (or disabled), the TRACE module is called at an appro-

priate entry point. This module checks and decodes the

trace request, makes (or deletes) an appropriate entry in

the list of enabled trace conditions, and, if necessary,

prints any requested tract information. The other class of

events which causes the TRACE module to be called is the

occurrence of a condition which is currently being traced.

In this case an appropriate entry point in TRACE is ^alled

to format and print the information requested by the enabled

1 See Appendix C, section C,^,6,

- 22 -

trace condition.

When SIMCPU encounters an I/O instruction, or when an

I/O event occurs, the module SIMIO is called. Different

entry points are used for different functions. The simu-

lation of the HALT I/O and TEST I/O instructions involves

little more than examining the state of the addressed channel,

subchannel, and device, and setting the CSW and the condi-

tion code to appropriate values. The HALT I/O routine may

also involve the scheduling and rescheduling of interrupts.

The START I/O instruction, on the other hand, frequently

initiates a long and very complex chain of events. In a

very simple case1 the following outline lists major activ-

ities in their order of occurrence.

- Fetch the CAW from core and validate.

- Fetch the COW from core, decode and validate.

- Call a routine which implements the specific device

Involved in the operation.

- Validate the specific command to the device.

- Schedule a device end interrupt to occur after

completion of mechanical activity.

1
For example, the Read,^Peed, and Stacker Select command to

the 25^0 card reader, discussed in Appendix C, section

C.4.7,

- 23 .

- Set up data transfers between oorr storage and the

device, to occur at appropriate Intervals over an

extended period of time.

- Set up conditions and parameters associated with

the end of data transfer (e.g. channel end interrupt

or event),

- Return to SIMCPU,

In addition to the simulation of I/O instructions, SIMIO

performs I/O event processing, and initialization for and

termination of I/O simulation.at separate entry points.

Figure 3 shows an overview of the operation of SIM360,

and may help to clarify the foregoing discussion.

- 24 -

J&L

ts

UoaA

&XW\C9U

Figure 3 : Simulator Operation Overview
(continued on next page)

- 25 -

TRftce:

 I
/ v^ QUIT ^^t, €x»\xo

x/o

(wST^bsT)

Figure 3 continued
(continued on next page)

*v

- 26 -

ftJfc^Hfcrtk ^

?

'"■ " 'cd
7

C_^iZ)

CV\>«\«.T crX/Dv

/^5 oxcerAW X ^€S

?
-^^^U.TW)

Figure 3 continued ^
(continued on next page)

- 2? -

-

(jnuKciT^

^0 tMLMti^«!
WOute oUXovA'SVia "Vo

c
iL

R«^wjrv\ I

Figure 3 continued
(continued on next page)

- 28 -

(SIWMO ")

c&u)

3 awdcjltv'ice

Set C^vO ouwt/
or cc«d\^\cA
c.(4c

(^<^jfV\

I

Cod*

)

«j^daAt ecu;

E
CM\ d<.v/K«,

I

(j^W* J

r^-ct^rw j

Figure 3 continued

- 29 -

3. PROGRAMMING TECHNIQUES

SIM360 is a program, and some Insight into the tech-

niques used in programming SIM36O is useful for increased

understanding of the simulation and Its scope. Some of

the more important techniques'- and data structures used

In SIM360 are discussed in a general way in the following

sections.

3.1 THE VIRTUAL CORE ARRAY

The contents of the core memory of the simulated

computer are held in an array.composed of n elements,

where n is the memory size of the simulated computer.

Each of the elements in the array is an eight bit logical

quantity which represents one S/36O byte. The bounds of

the array are so defined that the index of an element is

equal to the memory address of the rerresented byte.

Based arrays defined to contain groups of adjacent bytes

are overlayed (by a pointer) on the virtual core array to

allow aggregate entities (halfword, fullword, etc.) to be

referenced directly. This technique is fully discussed

in Appendix C.

1
A representative s. mi ;• only, not by any means complete.

- 30 -

3.2 THE PROGBAM STATUS WORD

The program status word, PSW, of the simulated com-

puter is represented by a structure which contains variables

corresponding to the various fields of the PSW in appro-

priate formats. The condition code, for example, is rep-

resented by a bit string of two bits; the program counter

(instruction address) is a signed integer which can be

used as an index into the virtual core array to fetch an

instruction.

3.3 THE INTERRUPT AND EVENT QUEUE

Some interrupts, such as program interrupts, occur

immediately whenever the proper circumstances arise.

Other kinds of interrupts, particularly those associated

with I/O, may remain pending indefinitely after they are due

to occur either because they are masked off, or because

some other interrupt occurs first. In addition, a device

simulation routine, in the course of simulating device

operation, mey determine that one or more interrupts should

occur at some future time as a result of device operation.

In such a case, an entry or entries will be placed in the

interrupt and event queue, a list of pending and scheduled

See Appendix C, section C,U.7,

- 31 -

Interrupts or events1 maintained in order by scheduled

time of occurrence. Entries in this queue contain infor-

mation which determines the channel and device involved,

status information for the CSW, channel and device, and

other necessary information. This queue is examined after

the completion of each instruction to see if an interrupt

or event is due to occur.

3.^ I/O SPECIPTCATIC:; BLüCKü

The I/O capabilities of the simulated computer are

defined by a set of specification blocks, one for each

channel, control unit, and device simulated. A channel

specification block (CSB) contains information on the

current state of the channel (available, interrupt pending,

or working), and a pointer to the control unit specification

block (CUSB) of the first attached crntrol unit. The CÜSB

contains similar status information, and pointers to the

next CUÖB and the device specification block (DSE) of the

first attached device. The DSB for a device contains all

necessary information to simulate the device, for example:

— A pointer to the device simulation routine

1 ''
Events are assoclatou with conditions in the I/O sub-

system and are fully explained in Appendix C, section

C.4.6.

- 32 -

— The data transfer rate of the device

— The record size of the device (If fixed - cards=80,

prlnters=132, etc.)

— The device status and sense state

— Pointers to any data In the process of being

transferred to or from the device

— Information on the CCW or chain of CCW's the

device Is executing

— etc.

All of this Information, and a good deal more, Is used

by the device simulation routines, the channel Interpreter,

the event processor, and other'functional routines In the

process of simulating I/O operations.

- 33 -

4, CONCLUSIONS

SIM360 is an unusually complete simulator of a lar^e

scale computer, complete in a manner important in the study

of operating system programs. It makes available to a

large number of people who have no complete access to

S/360 hardware a model of that hardware which is sufficiently

accurate to be useful in many areas where most simulators

are of little use. It has proven useful as a teaching aid

and is potentially useful as a tool for:

1) Systems program development and testing

2) Performance monitoring

3) Debugging complex programs

- 3^ -

APPENDIX A

PHOGRAMMING FOR THE S/36O SIMULATOR

*

This appendix ie intended to be a self-contained and

sufficient guide for students or other users of SIM360.

Familiarity with the S/36O assembler language is assumed.

A.l INTRODUCTION

The S/36O simulator is a program written in PL/I

which is designed to execute small (less than 32K) assembly

language programs in such a fashion that the programmer is

unaware of any difference from a physical S/36O. In partic-

ular, priveleged instructions, protection mechanisms, in-

terrupts and I/O channel programs may be used and manipu-

lated. There are exceptions and qualifications which surround

such a statement about any simulation, and several of the

more important of these are discussed below. In general,

however, any program which will run on the simulator will

run on the S/36O and vice versa. Your primary guides in

using the simulator are therefore Principles of Operation

and the S/360 Assembler Language.

A.2 IMPLEMENTED INSTRUCTIONS

The simulator does not handle the full complement of

- 35 -

S/360 instructions. A subset designed to be adequate for

systems programming use is implemented:

MNEMONIC FORMAT

DIONS

HEXADECIMAL
OP-CODE NAME

I. LOAD INSTRUC

,

1. L RX 58 Load

2. LR RR 18 Load

3. LM RS 98 load Multiple

4. LH RX ^8 Load Halfword

5. LTR RR 12 Load and Test

11. STORE INSTRUCTIONS

1. ST RX 50 Store

2. STH 1 RS 90 Store Multiple

3. STH RX 40 Store Halfword

^. STC RX 42 Store Character

!• ADD INSTRUCTIONS

1. A RX 5A Add

2. AR RR 1A Add

3. AH RX 4A Add Halfword

/. SUBTRACT INSTRUCTIONS

1. S RX 5B Subtract

2. SR RR IB Subtract

3. SH RX kB Subtract Halfword

:

- 36 -

V. MULTIPLY INSTRUCTIONS ■

1. M RX 5C Multiply

2. MR RR 1C Multiply

3. MH RX 4C Multiply Halfword

VI. DIVIDE INSTRTTOTIONS
■

1. D RX 5D Divide

2. DR HR ID Divide

VII. COMPARE INSTRUCTIONS

1. C RX 59
'-■ *. ,<

Compare

2. CR RR 19 Compare

3. CH RX 49 Compare Halfword

III. COMPARE LOGICAL INSTRUCTIONS

1. CL RX 55 Compare Logical

2. CLR RR 15 Compare Logical

3* CLC RS D5 Compare Logical

^. CLI SI 95 Compare Logical

IX. MOVE INSTRUCTIONS

1. MVC SS D2 Move

2. MVI SI 92 Move

X, AND INSTRUCTIONS

I. N RX 5^ And Q

2. NR RR 14 And

3. NC SS D4 And

^. NI SI 94 And

...

- 3? -

XI. OR INSTRUCTIONS

1. 0 HX 56

2. OR RR 16

3. OC SS D6

^ 01 SI 96

XII. XOR (EXCLUSIVE OR) INSTRUCTIONS

1. X RX 57

2. XR RR 17

3. XC SS D7

4. XI SI 97

XIII. SHIFT INSTRUCTIONS (LOGICAL)

1. SLDL RS 8D

2. SLL RS 89

3. SRDL RS 8C

4. SRL RS 88

ICH INSTRUCTIONS

1. BAL RX ^5

2. BALR RR 05

3. BC RX k7

^ BCR RR 07

5. BCT RX ^6

6. BCTR RR 06

7. EX RX kk

Or

Or

Or

Or

j

Exclusive Or

Exclusive Or

Exclusive Or

Exclusive Or

Shift Left Double

Shift Left Single

Shift Right Double

Shift Right Single

Branch and Link

Branch and Link

Branch on Condition

Branch on Condition

Branch on Count

Branch on Count

Execute

_

- 38 .

XV. GENERAL INSTRUCTIONS

1. LA RX

2. IC RX

XVI. I/O INSTRUCTIONS

1. SIO SI

2. RIO SI

3. TIO SI

^. TCH SI

kl

9C

9E

9D

9P

XVII. SYSTEM CONTROL INSTRUCTIONS

1. LPSW

2. SVC

3. SPM

4. SSM

5. ISK

6. SSK

SI

RR

RR

SI

RR

RR

82

DA

Qk

80

09

08

Load Address

Insert Character

Start I/O

Kalt I/O

Test I/O

Test Charmel

Load PSW

Supervisor Call

Set Program Mask

Set System Mask

Insert Storage Key

Set Storage Key

Use of a valid S/36O instruction which is not imple-

mented by the simulator results in a program interrupt for

an operation exception. In addition to the machine in-

structions listed above, there is a set of simulator ex-

tensions to the S/36O instruction set which currently

includes:

.1. TRACE and TRACEOPP - discussed in section A-5

2. QUIT - the simulator termination commands.

.

- 39 -

These are implemented as macro-instructions and should be

used as such, as they are subject to change.

A.3 PREPARING A PROGRAM

A program must consist of a single control section

with no external references, and must be assembled starting

at relative location zero. The simulator initiates ex-

ecution of a program in a manner similar to the hardware

IPL function, and the programmer must provide at location 0

an initial PSW, For example:

EXAMPLEl CSECT ■

IPLPSW DC A(0,START)

UNUSED DC 7XL8•0002000000000000•

CSWETC DC ÖP'O«

NOINTS DC 5XL8•0002000000000000•

START SR 12,12 SET UP BASE

i

USING EXAMPLEl,12

L ^,BEGINADR

■
SR 5.5

LA 6,256

INITLOOP ST 45,0(if)

LA 5,1(5)
,

LA k9m)

■

BCT

QUIT

6,INITLOOP

- 40 -

BEGINADR DC A(BLOCK)

BLOCK DS

END

256?

The DC labeled IPLPSW defines a doubleword at location

zero which will be used by the simulator as the initial

PSW, In this particular example:

It All maskable interrupts are disabled,

2, The storage protection key is zero, providing

unlimited access to all storage,

3. The CPU is in the running state and the supervisor

state.

4, The initial condition code is zero.

5. The first instruction to be executed is at location

START.

Other details illustrated by this example are:

1. The programmer must somehow initialize the per-

manently assigned core addresses (24 - 12?) to

the initial values he desires. The method used

here is recommended.

2, The programmer must provide the assembler with a

base register and initialize the register. Another

example will show an alternative method.

.41 -

3. The simulator should be terminated by the use of

the QUIT macro-instruction.

AA INPUT/OUTPUT ENVIRONMEWT

The current version of the simulator implements only

a byte multiplexor channel with two attached 2821 control

units. Each 2821 has attached one 2540 card reader-punch

and two 1403 printers. The assigned device addresses are:

First 2821: CCC Header

00D Punch

00E First Printer

OOF Second Printer

Second 2821: 012 Reader

013 Punch

010 First Printer

Oil Second Printer

Detailed information on the programming required to

support these devices is contained in Principles of Operation

011(1 *■ IBM 2821 Control Unit. Component Description (A24-

3312-7).

Special considerations involved in programming for these

devices on the simulator are:
4

1. Nf) special fcat/res are supported.

■

- 42 -

2. Stacker select commands to the reader punch are

not simulated. Stacker select Inrormation in

25^0 commands must be valid, but is ignored by

the simulator,

3. Carriage skip commands to the printer are all

interpreted as a skip to channel 1 (head of form).

Carriage skip information in 1403 commands must

be valid, but regardless of the channel specified,

the paper is positioned at head of form.

A. 5 DEBUGGING AIDS AND M^MTTORING FEATDREf.

A.5.1 FACILITIES

The simulator has extensive and powerful trace facil-

ities to aid in debugging programs. Proper use of these

facilities will greatly reduce the number of runs required

to solve a given programming problem. Tho trace facilities

aro dynamically controlled at execution time by the use of

the TRACE and THACEOPP simulator control instruction. The

following trace features are provided:

1. Branch tracing: whenever a successful branch

instruction is executed, the stan-

dard trace information will be

printed. Options may be specified.

-43 -

2. Address tracing: whenever a given location is

referenced as an Instruction

operand, the standard trace in-

formation will be printed. Options

may be specified.

3. Execution tracing: whenever the given location is

referenced for execution, the

standard trace information will

be printed. Options may be

specified,

4. Instruction tracing: whenever a given instruction

(LR, M, SSM, etc.) is ex-

ecuted, the standard trace

Information will be printed.

Options may be specified.

5. Interrupt tracing: whenever the specified type of

interrupt occurs, an abbrevi-

ated version of the standard

trace information will be printed.

Options may be specified.

6. Channel tracing: whenever the specified channel

performs significant operations,

an explanatory message is printed.

Examples are:

- 44 -

■

a) A new CCW Is fetched in a

chain of command chained

CCW's. This information,

and the address and text of

the fetched CCW are printed.

b) The channel receives status

from an attached device.

This information and the sta-

tus byte are printed.

Options may not be specified.

7. Snapshot: whenever the trace command itself is en-

countered, an abbreviated version of the

standard trace information will be printed.

Options may be specified.

In addition to the above, the simulator can print the

standard trace information for each instruction executed.

This facility is not dynamically controlled, and must be

set by the instructor.

A.5,2 STANDARD TPAQE INFORMATION

The standard trace information mentioned above contains

the following information:

1. The current hexadecimal value of the location

counter (LOC),

%

- ^5 -

2, The type of the trace request which caused this

message. For example:

PGM INTERHUPT

ADDRESS 00P6

INSTRUCTION SSM

SNAPSHOT

3* The instruction count at the time of the trace

message, i.e., the number of instructions which

have been executed (COUNT).

k* The elapsed virtual (simulated) time since the

start of execution.

5. The contents of the current PSW (hexadecimal).

6. The IBM mnemonic op-code of the instruction asso-

ciated with the trace message (OP).

7* A hexadecimal dump of the instruction associated

with the trace message (INSTRUCTION).

8. The hexadecimal absolute addresses of address

operands 1 and 2, if present (ADR1, ADR2).

9. The first four bytes of operands 1 and 2, if present

(0PEHAND1, 0PERAND2).

The abbreviated trace information printed in an in-

terrupt trace message contains only items 1-5. The informa-

tion printed in a trace message associated with instruction

exeoution(Branch, Address, Execution, and Instruction trace

- 46 -

types) reflects the state of the CPU at a theoretical point

In time after instruction fetch and address generation, and

before any data has been changed by the execution of the

instruction. The information printed in a trace message

associated with an interrupt is that existing after the old

PSW has been stored and before the new PSW has been fetched.

Snapshot information is associated with a point in time

after completion of the execution of the instruction pre-

ceding the trace request and before fetching the instruction

following the trace request.

A. 5.3 OPTIONS

The three types of options which may be specified in

a trace command are status, registers, and core dump.

Status information is that contained in the permanently

assigned low core area from location 2410 - 12710. This

includes the old and new PSW's for the five interrupt classes,

the channel status word, the channel address word, and the

timer. Any status options requtsted are formatted appro-

priately and identified. The registers option is obviously

the 16 general purpose registers which are dumped in hexa-

decimal and decimal and identified. Core dumps are in hex-

adecimal and character format. Further discussion of the

options is included in the syntax description.

- 47 -

A. 5.4 TRACE SYNTAX

The syntax of the trace command Is

BRANCH

ADDRS^r

EXEC,adr

TBACE i INSTR,opcode

INSTPT^type

DUMP

CHANL.chadr

where

ILABELI 3 [»options

adr ■ a label or decimal address

opcode ■ hexadecimal opcode of Instruction

PGM

I/O

type « < EXT

SVC

MCK

chadr ■ an Integer 0-6

opt .Ions
']>}

STATUSB rstatus spec

^ (status spec I »status spec

REGS» T Integer 0-15 ^

\ (Integer 0-15 [»integer 0 - 15J)r

C0RE=(core spec Lcore spec I)

-48 -

status spec = OLDPGM

NEWPGM

OLDI/O

NEWI/O

OLDEXT

NEWEXT

OLDSVC

NEWSVC

OLDMCK

riEWMCK

TIMER

CSV/

CAW

oore spec ■ adr, wordoount

wordoount - decimal Integer 1 - 128

Note the following points:

1. Eaoh 'core spec» Is a pair:

address,wordoount

2. in ..oh tr«. oomKma rtjo.tag options . maximum of

16 registers

13 status "fields"

8 oci-e dump specifications

may be specified.

- ^9 -

3. The example uses snapshots heavily. This is ac-

ceptable for very simple proffraras but for complex

problems the more useful information comes from

interrupt and branch tracing, and well chosen

instruction tracing.

The sample program which follows should help to clar-

ify the information given above. The circled numbers on

the trace listing refei- to thft notes which follow the example,

—-v- - - ■—^ --

-r-

10

I/)
S

o
«TV

I
I
z
c

(9
111

5 s

to uo

VI

5

o
o

o
o
M
o
o
o •
X
o

o
o

T <
2-

O
c.

o
o
o

u

a.
O

o
cc
O

8
o
o

§
o
o
o
o
o
u
o

o u
o o u
C' oo
-I u u

o
u
o
c
o
w
o
o
o
o
o
o
pg
u
o
o

o-
o
Ü
o
C3

.5
11
i-o. •

s •
«VIM Of
OH a 111

» a z
VIZ3 4
ft-Moe x

at
X MUJ K
iu« K «a
ZX Z X 3

i/i —vi et
-i a a. qc « s S
ZQ« CK
oe uiae uiz
in vi u «/•«-
»- DU 3
K zac ZO
Ul 3». D —

2 S
e o o o
8 3
S-S

«/) (M O IMO »- oa o*>
eoooo

P4 < X < K<

I u u o u
lOOOO

r» oc » o^

er C
<t o
o o
o o
o u
o o
oo
oo
o<J
C <J
oo
o o
o «^
o <->
o u
o o

< o »
c o u
i^ o «^
o oo
o oo
c o u
o oo
o oo
o oo
o oo
o o o
o o o
O Pt o
u ü o
o o u'
o o o

a u u.' u iu
«'. <o « f- ^
o u o o o
O <-< u w u
o o r> VJ o
c o o a o

• o>
ti S

g.*.
oor-

• oz«
IU ui •
& ||»
■J o<*
a z »
«/i u. m « MK • < «CM

ox .
VI vix- ^« »

»Ui o
a. UIIM —
« XVI K
oc M VI
3 l-OO
O to IB
OC vi ee'
0. MVI •

zac z
HUIO

»- a
»-VIO «*- -»

OO
VIUI «
K« V>
a 3
3111 »>

S VI —
HO ••
ZZ ZN

e H*0-« » ft. •
IU zui »o
z <oe K —
«z «oo. tt
ZUJ
t-O

Oo at w
O K OC

vio «ozo
-IZ a ui» u

VI
OH- OSUI
zz Z U ^- •— "-U. <
vi oe HO ae
sa O H

Ui_l
ft. J

2*
a z

C j u>
« C?Ul
« « B

«8
M

^ •
•-IO

H —OS
ft. z o

«1 UI

ii
VI

»UI3 zx
I- H UI

izS
< 3

IUIL
111 ct xuee
«HO
z VIU.

m<f «o^ CO

ui^ ae ec
«K- 3 a.

x uui
^ UH

• a ot
HH 3UI
*-— « X
<z or»
X3 UJH

H
UICK ZUI
ZUI »UJ

M UI
H XO

J •"*"
30U
OC H
oevi<

-JH
OCH Ui
UI O
zui«
MM ae

■«asHi
a« 3H
3 «a

»oc ae o
H VIIUH <0 CDX
UIZ H Z • f • vi z» «<ein
HT"U»
vim _IU
ee < <
M v zae ee H <
u. ae oe H vi vi ^

< in

JH K
M>-> UI
xac

uia x
i « H
• « «
O H IM W <M I*» ♦
m n ci m * <*-*

VI
ft.

vi ae
• a ae

VI Ui
«HH
32Z
(J < M

ee ui

a. O»
3 H
oez
aeM <
Ui
Hzae
zoo

o

£3
a

-i VI

x o

ZUI
oe -i
Ui (D

< aetuH
UI VI«-

8z «
M VI X
HM

S $!:
iL wa

13 sit
Z H3
H zac
z =85
Ui UIH
H HZ

S 2-
O \Amt

> "• oe
« 0. -*UIH
UiZ XHM
X 3 X «

Q Ui Ui X
H Z
< UI H Ui
XO X X
H« OH VI

oe H a
toHZH J
Ik M «

S of
Ui o >
o
H

s
o
a
o
o
o
o
o
o
o
o

s
u

o-
OK

S8

5S
♦ *

«CH .6 f» «0
<«•<■ in vtm

OH

* •
VI

Kto o a
«•MS

c- ;y — H at
X O • »O OC •
Ui C VI O 3 UI UJ

»H « ae H z ui ui a. »H z o
x z 3 ^ VIM B
H — oe »z

_iqe MM o a
ui ui o v c
ui« H VI z M o
VI Z Z -i -I
W VIM M UJ

H II IU I tt
iu « a ui z H u
a M v oc H u.
ui oe M o z
z n. o XUH

o »OH VI
UJ X Z — X •« Ui
zo«ir\ vt x H
o M •>
OX««'

xz •
IU OMI
:t ft. M M

OH —
»O« K •

VI ^O VI
ee oo
3H.JI1I
ooe ee
oo« •
ox x .

vi »o u.
H ZH O Ui
a « o - C«
3_M z «BM x
ee o H vi <r » »
oe oo • »HZ
ui oviee a o
H .jee een« H
z ^H o VIH M
MM VI O Z Z X

X Z « MM VI
ee M
Ui 111 Ui 111 UI
z xzooo
M < < « « M
H x _ oe oe oe j

OXHH H o
Szo
H «

Z-*»H
uixaee z
x vi «e H - u
x a « vi w
« • * H O

m «* in «c » «o H
•o -o <o •c t^ IB <f

OM

ss
oo
OO

o
o
o
u

e M
in o
oo
c o

«oo
<u « in
(COM
Min <t
IU « UJ
(r o a
o o o
u o u
o c «J
o o o

1
8
<M
a

u <
o
u
u
a

s
o

s
M
o

m
0-
Ui

o

S

M IM

Ul
O

- -v o

■ M iu UJ z
v> s a.z 3
H 5 oo
a o »-
s o a M

ae MO
ui » o
»- P- CK UlO
ZWO XV .1
MUI ac «K M iu

tea t . .
X U. UK H ^ Z
O U K ^ <
O- OC • < M x
OKOSM
O Z Z K Ul

M H O M »_

I
I

ae
o

Ui

<

ü
ae
3
o
VI

N

II O
• •" O (M

HUIH — UlM O
zoae <# OK e
o o o» o M «o
O » <c M • «0>
H X <h- K SOX

C MU OM
UJ^Z >•- e. too
coKas«A^oS

o

«cero>4fMf0^ir
ao-oooooo

oca

O

m

Qj

«1

o
o

OO
c o

at
o
c
<

o
c
u

I-'

UJ o
o
o
o

«o o
mi O
o o
o o
CO u

o o
o o
o o
CD
o

u en ui
— sj O
— o o
o r> o

o m o
i^ o o
f~ «M (j
•4 O O

o
u
o
o
o
u
o
o
o
o
o
o

o

l\i<tillij*tr«-»cj
Ui.ju.. UJU. UL U O

O O O C* t.' O «J «J
OC'OOCOtJO

z
o

MU.

ouiiu

Uio
Hi

wio
Ot-U»

0«M
-o . <

- f„
a. •
«n in

Ul OUi

UIO
ZlkM
X H

« >.UI

Ik
U.H

I« •■ <
* X

85-
.JMUI

JUUg

aenui
UISK •
^o<ae
oae MQ •
z ae ae ui
< o a. ae u
XMQUJ M

HSSLZ Si
O-H- CL < O
SCO <
ae o«
ae > MUI ui
uiae tuae a
H Ui kt iu o
z > <o ae
Ö KM CL
_•« V»
OM OZ Ul
vx «eu x
«»- < u »-
* « • • •
KCB a O —
o o O ^ >4

M
«A
Ui a

• o
• o ae •

•AZ& g
KUI z
M a ui
« j z

Ul UiUi 2z .3
3 Z -iM
H« Ul >
<I ZUI
KUZ e
v» «
_ae X oe
za wo
MIL u.
o a

H OK
KM tn
ui iu a iu
OKttP

i/> -ifi.

ui«
OK
z ui •
*• X
KO<
z uiae oou
u z O

»mac
• z a. •

O I ~z
Z Ul Ui 00 4C
W -I X '<J «

a K M o
Ui z »o
UMK o ae
•-•«oae«» o.
> OR
'U > 0 Ui K
o ae<ae ae

Ul u o
u. >QOeD
M Z •«

v>< —
« X
Xfc .-»
Foo
— « j; Zaea

• zo
z o
DMS

•- •
Ui «/I

■ o«/»o
O w •« K
e >z«

«D <r UIK»-
e e o vt
• o • H •

«xzxZae«a
«NUIHOOXX
» »X »O K O

mmu mu o o
Sz ut

OUK
J «/>< •-•

XXu;XUJUi«/t«o
_lUBUCCZ<KO

z
««J 213

s

z
u

K ee
Uttio
z z a
♦ ♦ <

000<-»~*-<-«-*»-»H»<^ipHff(

<# U <t UIUI

o o o o o
o o o ^ ""

* o •* u.' ai
«T o w u c
O M M M o
o o O o o

O C o o o
ITS U' cr u> ai
* v r- a r»
<t <* ^ «r ^

CO U C "I OJ
o o — -< ^
-< •-> »- <-« -^
Cl U o (-> o
U U U tl o
u <J c o o

5fc

I UJ
oe i/) o
ui o z
H < Ui

OUi Ui
O«0 X
O K

O X Ul
• OKM

I* U.
I/(K O ►■ —: o z

(9
Ui _
a ui
(9 X Z O Ui « «/)
ae ae u
a u o

UiUi z
z o z ui

z
<
o
Ui

• X
ae
tu y
u. ee
ss
< UJ
ae«

o

§

M
QZ —IO z • • •
Ul ^M V

z <oe
< -J-JV)

5

I

UJUJ
u

UiM
o>
<— ui
>o
m
am
A
mtV>
M

:i
M<00
19 SKM
«/» K
X •Z»-'
• ae5<

ui«
xae a
OUI M

K la a
M Q.l

»
Kae
l/IUJ
ox

« u
m <OK oe
f^ M (t\ f^

« •
C O -* fM
W ♦ «f <

eo — co
in O in
oo o
O w O

OC «« OB
in o m
-< o M
o o o

O o ir o
^ u> <r ^
"■ "< O"; o
i." ^ •— if

-T u (_/ UJ
n M »^ r

u t< r 'J
o t> n <->
o o c o

n f>»

z^

s»
o-o
oo
o
-Jl-
• o

X
Ul I

I/)
Oe tm
uu _i
U. W)
«/>
ZUJ
«K

es

at
• o •
SN

• ■
■ K K
X • Z
*N O

CO O

£$."
■ • eo ♦
•imooN
-•oo JO
• • « • M
XMUUX

X*. S uuuu o
uuoo ui

§ X i N g
M O Ul *•
oe viv> z
a zz v»

s
o

o
o
c
u
c

O 00
O o
«-• m
o *■

o
O O c
«-I o 3
r. CJ -.
^ c —

O -O
o o

o o
N J- ai ni fw
IT u u
— CO
r; u c
C- '.5 >0
O u. U
^ CJ n
ü u. c

<M *j -r u u iw c
»»' ^ s* w. u* J" »■

'.; O C '-' v..' '.J u
ej ti r u cs o o
o o c o c? o o

5
til

I

s

s

KX
U

3K
O»-
x» i

o |
lb 1

o M :
«A« Oc
Ui f» K
«J X»
<U- •"
aeu. «u
"S
x < »a

S5
HO
♦ K

» O « ^
>♦ m tn u

in

O
O

oc ^'

j n

o-i
>T •
0U
If

I I
ril

I- X x*~ •
mm m

UJZ>

M a
U.H-Z

wir

o

OH

o u. M in « IU

TIT«

at JK
w S ft
-JIU«-
-<»- _i
MZM

H <
MOCK o or
tu o ►-
ac « o
• o.a.
x
a

19
SIS'

V»
ao

X
-o

s
I

4
o

o; oc 3
H- uar or K
uiz >UJ «
O«JOH

sg

ac

§

I
I

o

ac

CVJ

91

x >
OXM
zoo

K
<o

• »H
a.
OOUJ
ozu
-i 4 4.

»- MO h>
z a~a.
IU a.»- s
X •«< AC
ui ec ott
t- SZIU
< OOH
►- uz
v>> x •-

IU MO X
U X J <
a u. ae
3 ai or o
a zwo
"» u > a

ou a
• ♦ #

t- oc a o
x «.or-

A
3

19 a. z
••O

Ja!

z
I to

«4 O •-

h- oo «

«A
o
a x
<

dZo
o —

a. u

o o a

IW

M
u
a
x

x •

« a. iu
XMinxH

l
'ft
a
IU
ac

a. iu

^uMnutMr-K.fin^oz
IL M

o UJX
zu. «jar »-
»- a. x <Ui M

«oc^oaeft. < ee a K 3
_. J < 10 iOli0^^<P o

sit
Oik
Oik
ou.
O Ik
co ik
or»

ik» •
OX X

zoo
MOO
«CD* a eo •• • •
< XX
N R «

X

a
-I OQ

^ogj

y
< z
a. u
>- z
• *

z o

w^inoh-eco'C — Macaco
CDfl000C00000flDC^'0*Cs0f'OO

o
a

Be
u. x
a«
U.X

o »M eg f« •*■ tt> «o
•H M »^ M »^ p< ^«
IM<N «MM N NM

I
I
Z
IJ

u
Ui
to

oc
o
o
<

cc
c
c

o
u
s
o

Si
oo
oo

4-IM

oo
oo

CO

o
o
o

Ui

«*
T:

c
o
o

o
IU

CD
c

o ^■(M •«-M
o oo OO
»4 ~*o -40
o oo oo
oo 00<4- f- o o o in r^p- 5F »n * r- r- 4- U\ UI
OJ^- m -4 « a- *• ec — «r
»0 o IT * "* •rfO IT 4- o«

a o L'J IV «O a; 4 u u v
a, ot Ui 0' 0 O' 0- 0 < <
"^ «4 ^4 -4 ^4 -« r-" i- »H »4 u u U U o O 1^ O «J O
o o uo o O o o »-' o o o o o o O W O o o

eo
rvi O U. 0Q
o o u. •a-
o o u. M

ou. o
o o u. o oo
o O a o o o
«\J n; u. O OJ ^■
00 o r- o OO

<J CJ O V «» U "J
e. o u o c o o
~4 •-4 ^4 P4 •-I •-' #-•
o u o o o «-> o
o u o o «J i> o
c c c; c; o oo

I
s !

■ -\, .«..

2

5
Ik
Ul t K
iA a
u

i/» o <o 4- r-
O» Ä ^< »
P4 p* N

»A

«
Ik
UJ
ee

o —<ai»<^-<0Dsff~ w r- «r too

o

rg ^ « -< h- rvj «v f\; o IT» CP <•> h-«P C -* \t\
r* rti tt\ — v ** »<«r'»,o,»',»m*'<ot'

m «jtjooovjooooowooociu
^i #—* ^b «K ^^ «» r i ^-^ ^^ r-» i«^ ^ f % #-^ ^^ r^ ^"* CJ ooooouooooou

oooooooocooo
o o o o o
c o o o o

a.
>•
to

UJ «J
2 * «" »- o x u

u c- ui u ui »• K K o CJ a. ►- <-< CJ H •■■ >-'
C UJXt.t-'U«/',a'"*''Oof-^«-)l^*>»l
< ai CJ u (.* •-. _j x. s. J: •»• a i// *- H JK s

>
tu

• t . —. >• x .

I
O

u o
Ui

V»
UI
QC

o
<

OOUOOO«4«4>4>4
oooooooooo
OOOOOOoOOO
oooooooooo

o
ouuowuouoo

_J oooooooooo
■

o.
oooowooooo

•■»■ • —• <•• ■ »..

..

o
T
C

ä

i
u <
< kii

o —
o ^
er S
B T a. v)
et <

a

z

u »

< ¥-
-lift
U. Ul

X

Ul -I

g in

Ö j

I s s
o
u.

u.
o
u.
o

o
o
o
o

§
o

o <o o m o

wm

s
i! «0

o
o

-

si

o

s
o

o
o

s
o

s
o

o
o

OB

h

Ui u.
e u.

o u.
E o u.

s s
B >4

i
s

ON

§
o

i
o

o
o

er
■
o

o
o
o.

o

co

*
o

i
o ■■

i

«0
IT

O ml

8
o

o

Oi
o •
o •

ON
ON
ON

O

s u.
u.

U.
o

c
■ M
o in

I * § t
O It

E

o ««

öl

s
O

s e

s

o

§

o
o

0
•
o

in
•4
O

IL —
Ui |
m

o u.
S it o u.

m

K

IM
o

St:
ON

8
o
o
o
o

u

•
o
o

s

NO r

B
z

U

o

a.

£1

51
C I
O I

a. i
>■ i
►- i

O I
* t
a t
K i

i' i
»- u l
M c |
-J _i I

o
o

8
o

o

8

i
a.

I ®

Q;

o
o

o

o

o.

w
w

m

©
o.

cc

o
c
o
o
o

o
o

8

o o

8 8
5 8

r-.

es
o u.
U. u.

* o u.
u. U.
o u.

•> 11. It
u.
u. •• ••
u. <# w
u. * er
u. w

•• u. ••
ec «^ u. a
-^ lu D » •
OH '• C *t O

tsi * IT. IT
•• •— ill ^ O
w- o a a c o
c-i ai c
UI oc u
a
n
o

«M

o

8
N

o

o
ID

VI
a

CD
l«U

o
o

8
o

o

o
o

VI

CD

o
o
o
o

o
o

«•» m

o
o
o

M O
a o
V)
a »

• I
l«>

s 0

in

S!

XL

. u. u.
u.

•• ••
u. <r o

a

a
a

rv

o
o

er

o

UJ vi u. u.
u- oc u. »

C H •• O T» O
vi ^ u\ |/\
-• UI -^ O
j Qf O O C

lb fit U ■
Q

^0

m
-♦
<o «o
M U. O
in o UL
INJ u. u.

I o u.

o u.
. u. u.

M
U. M ••
o •*■ o
u. «r cc
o «

•i U- ••
OC vi o u.
in a u. z
-< in 3 • •
o H •• a oo o

«/) ^ in m
•• m* lij *4 O
Vt O Or a o O
v>u f)
ui a u
K
8

e
8

O

O

v«
a

o
IB

o
o

8
o

o

o
o

t*

35
a

o
co

o
o
o
o

o

o

o
o

VI
a

in

*> -r
• I*I

in
IM

♦ I
N

8
N

O

O
«0

••
?.

?

K
e.

cc

Z

u

a

v»
Z

u
O
a
o

•• u. ••
a< v> u u.
ir n. u. z
~<UJ 3
c •- •• u

vt ^
•• •- Ui
to O a a
i/. tu ('.
ui a o
a
o
u

o
CJ

IM O u o
O M
u. u
O U
u u.
o u
u u
•• ••

tu o
y. ^
M o
o o

a
OC
ot
UI
►-
z

g

a
o
c
o

a SI

i
SI
SI

s
»

(9
O
O

o

o
s
u. s s

e

o
o
s
o
o

o

%
Ö
»

IT 5
o

§ i
e

s i
O M
•r i
CD

1 ^

«0

o »M

J$ 2

o
in
s

u. —
UJ I
IT

-#• CD

s in

o o
o
in ?

in

O -
♦ I o
in

u It
Ik

• ••
o m

fMN K Ml«.
OK M O»-
O «*• O •*•
O «»■ o «^

IM »

O U.

S It
Ik o u.

-< in o S

8
o

o
o

•
o

o
s
o

as

o
o

CD

o

O Ui
o &
Of-

o <

N

u.
u.

o m
O «4

o o
o
s
o
o
CD

o
o

n •

o
o
o
o
03
•
O
O

o

CD

o
o
o

li.
u.
Ik

e m
o •*
• at

o

M

N ►
• Ik
— Ik

S It
O U.

Ik
O Ik

Ik
c
• tt
•* in
O -<
• ac

o
a i
o i

s
o
s
o
u
OB

•

<
z

u

c

If

*-1

51
u i
U I

Ul
&
>•

1

i
o
o

l/l
a

o
o
«
o
o
o
o
o

in

o
o s

o
o

»I a. m
t- <••
• ro

a -«
a in

•O rvi o
IN U. O
m o i*
rg u. UJ

* I O Ik
n u. u.

O Ik
» u. u.

o <r o
U. «cb

• • U. it
a' i/> o u.
m a u. Z

O ►- •• o «r o
«/' »f mm

•• ». UJ — o
i-n O B «CO
«^ uj a
uj a. o
er
O
D

o
o
o
o
o
o
o

«0
h- in
► m

v in
•*
4)
N
m o m
rg u. UJ

r» i o u.
m ik u.

O Ik

s
N

O
CO

V)
a

CO

&f8

u.
o

•»i
•i u. ii

c«/> u a
iA a a JC
-• U 3a»
OK " O <o O

t^ «i- mm
II » Ul ^ u

I^I c o- « o o
«^ UJ O
U U «J
a
C

a.

a:

11

o
o
8
o
o

§

3
«1

CO

o

o

a

o
o
o
o

o
o

«/>

o
o
♦
o
o
o
o
o

m

•o u
co
— m
CO

•o
IM
u\

I

IU
o
8

o
o
CO

w»

«X

00
0>

o
o
8
o
o
o
o

«/I
a.

CD

CO
IT

— o
u o
o in

bit
u. •• ••
o ■*• t-
u. «r cc

•• u •■
ik vi o n
UA a u. >.
MUI r » «
o K •• o <c o

ci ^ u' m
•• ►« UJ •< o
»r c n e c o
i/; i j l_
u. ct u
a
o

a

a

o
3

a
e
8
o •
o 8
o o 0 8
•• o
•» o
a ••

m

t *
N in

o
8

8
X

a

o
o

o
o

m

CO
IT

IT.

m

(M
m
<\

(

£8
O IT
U. U>
o li.
U. L.
O U.

m a.
m
N o
• m

B -«

IM
>l
<M

K I

I
(M

c

X

a

m
CD

B

5

— o
U. o
O m

O u.
U u.
O U.

U. ■• II
O iT O
u. «/or

•I Ik II
OJ l/> 1/ LL
tf or u. y
-< ik r; • •
o »- •• a «r CJ

Ii »I u. —. o
i^ C c^ n o O
v- i- i.
u u. u
a
a
o

C
U II Ii
o -t <~>
u. <» <r
O (*

■* U. II
ff l l_i u.
in a. IJ. z
— u 3 • •
o ►- •• a n-' o
i. >. IU ^ O
f I- 3 .- O O
t ' i. ('
u. IA. i >

a
Q

S I
►- U I
f. U I
-I wt |

it. 5
-i

o

o
u
f >

O o

pg

o
o

o
w
o
u

a

o I

o
8 e

o

2

o
i
s 3

i
s

CD

u i
o
o

■

o **

5
o
o
o

i
o

IT

a.
O

e «>•
o «<-

It
u.

s
o

8
s

O I
O (
Oi

O !>•
Of.
O Pi
ON

8 u'
S it

u.
u.

■r u.
S u.
O u.
e u.

s
o
§ o

8
•>»

S o
o

u

Si
e
o
8

o
o
e i

u.
u.

o o o s
o

o
o
o

00 E »A £
• t

a
a
O
ir>

u.

I
I

— •
-I

I

»- I

Si
O I
o I

w
a.
>

i
i

I
Ui I
w I
« I
et i
K I

I
U I
U I
-I I

o
o

o

o in
o —
- ec

— m
o -<

o
o

I i
s
o o
o
o
••
IT

ec
■o

•O

IM
I

o
u.
o
u.
O

ii u. ii
VI u u.
a u. I
Ui 3
K II D

C or a
U. o
a «_;

o
CO

Z'
in
o

o o
li o
o «
u. <
o a

felt

v o
in m
— O
o o

o
o
o o
••
X

a>
o

o

a.

a
or
IJU

' J

o

*-
in
2-

a

i
O
o o o

o o

»M
I

o
u

c
•I u.

<t "l (J
ir< ac u.

o o o o o
II c
X o
VI
a II

in

CO ec
5 «0 » n
o Ml

w >!•
Wi oo
(M u o
in o «

o o
o

0 2 o S
•• o

m

CO
O

o

*2
u u.

«r a

L.
»

•4 UI D • »
O »- •• O o- c

«/) «r u' o
MM U.' -4 C

ui a w

a

o

in

■c o o
N U O
in o o
N u. <

i^ I o u.
h- U. U.

O XL
• U U.

U
UJ •• II
o <c o
u < <c
O I*

•• U. II
eo vi u a
u^ or u. x
^4 Ui 3 « •
O K II Q «JO o

vi 4- u i.\
II »- it.j ~t o
i/i i: a u o o
vi ui c
u. oc u
ac
Q
O

<M

Ui
o
s
Mi

o
o

X
VI
a

•
V

0

o

o o
8

o
o

X
VI

•

a m
O »4

« ♦
■ N
U O

0.

a.
a
i'|
►-■

Z

'<

ä
V)

• (•>
«r m

«M
in

■t I

U.
UJ o
u
O

II u.
a. vi u
in a u
—I iu
OH"

vi <r
II »^
v c a
V ' '
u or
•
tJ
«4

f;
Ui
o
o

u. o
Ui u
o v
UL n
O u
u u.
O Ii.
u. u

II II
* w
4 eo

X

§

z
O on o

UI — o
n. t, O
C

f '
X v
a

r-

o

<W »4

s
s

s
s
o o
o o

s s
X
VI

«M
o

v

<M

•4

I

O O e e o o
CD o e
B CD

in

ec

to
O

O (M

eu
•*
«r
P4
(M

o

ü

P" o
a. a
3 II a
a *«
a ^J O
IU ►- «i
»- « t-
;.r »•
•- VI

5
UI
u

o
V

u.
•• u.
VI u.
or r-
UI
K ••
M ^

l i c
I
n

O
o

s
o
o
o
o

•0
ir

0

vi
CL
Ui

VI
t- •-
r C
i m

• t

VI

o
c

•

•

•/I

«0
<«
•

o o

1 o
»r»

«

T
Z M
c »-

4

&
or
ui

2 B
c ■

i
y- w *■
«t i-^ ^*

or
r.

f

UJ

o

Irt

2

'

«

! I
ft

,»
• ■

8
:

!

• a- • • •

• z « M
• « •

Eli • of
8ul • « •
• «jf #

isi
»«#

8^8
:s:
808
f -« §.
» 4U »
^- #
• X *
» »* • • a ♦

858
• ^ •
* 3« ♦ a. •
• ►- •
= • ♦ c. ♦

o * *
°: 8
• * •

i

«
«

» «
«
«
« «
«

«
«
«

«

*
*

*
»
8

«
«

• « « •
• UJ „
< :» *
j- < «

■ -' »

* to «

•

I

s OJ ^4 o o o o o o o o o o o o
H 1 N M ^ ►• »- ►- -e z ■ z ^ 3 => 3 u u t-i Li «-> O tu o

a. a a a
k> I_I •_> u
(J (J L> U

- 62 -

Notes on the example:

1) The location shown In this column Is usually the

location of the instruction following the in-

struction associated with the trace.

2) The time is the elapsed time, in microseconds,

since the start of the simulation.

3) Sec the LPSW instruction at statement 58, and its

operand at statement 61.

4) This group defines one iteration of the print loop.

5) Note that although this instruction does not address

the traced location directly, the location is con-

tained in the operand, and the trace occurs.

-63 -

A.5.6 TURNING OFF TRACING

Any requested trace facility may be removed when no

longer needed by means of the THACEOFF command. The syntax

of this command is identical to that of the trace command,

except that no options are included. In addition, all

traces of a given type may be turned off by replacing the

explicit specification adr. opcode, type or chadr with the

word ALL. For example:

TRACE BAL

TRACE LPSW

TRACE ST

TRACE STH

TRACE STC

TRACE INSTRI45

TRACE INSTR,82

TRACE INSTR,5P

TRACE INSTR^O

TRACE INSTR,^2

- - code - -

THACEOFF INSTR,ALL TURN OFF ALL INSTR

A.6 HINTS

1. Do not place any cards containing // or /* in

columns 1 and 2 in your deck.

2. Use your last name (maximum of 8 characters) as

the label on the CSECT card which must be the first

card of your program; This makes i.t easy to iden-

tify your assembler listing and output. Use a

TITLE card with your name also for further ease

. 64 -

in identifying listings.

3* Your deck should have one each CSECT card (above,

first card) and END card (last card).

4. Do not use the EXTRN or ENTRY statements or Q or

V address constants.

5. The first 128 locations (16 doublewords) must be

' properly initialized.

6. The instructor can set the maximum number of in-

structions you can execute and the amount of virtual

time which you have to run. Be efficient in your

code and use the wait state properly.

- 65 -

APPENDIX B

INSTRUCTORS MANUAL

An overview of the steps in running the simulator was

given in section 2.3. The detailed procedures are only

slightly more involved. The following sections discuss in

detail all the necessary considerations.

B.l STUDENT DECKS

Each student deck must be one (only) S/36O assembler

language control section. The simulator's loader cannot

link control sections, properly process external symbols,

or relocate to a base address other than zero. To enable

all of the simulator output to be easily collated, the name

(label) on the CSECT card is used by the simulator as an

identifying tag on all ouptput. A student deck should

therefore look like

name CSECT FIRST CARD

assembly language statements

END LAST CARD

where name is an appropriate identifier (student's last

name or assigned I.D. number, for example). It should be

- 66 -
*

noted that improper use of the ICTL assembler control

instruction can cause the assembler to terminate processing,

and thus abort many assemblies in a batch run. It has

been a successful policy to simply make no mention what-

Foever of this, since this feature of the assembler is

very rarely used. Should the problem arise, students can

be instructed never to use this statement.

B.2 ASSEMBLER INSTRUCTIONS

All student decks for a given run should be grouped

into one large deck, checking each student deck for the

presence of an END card. In front of the student decks

appropriate Job Control Language control cards must be pro-

vided. The following cards are the appropriate ones for

M.I.T.'s Information Processing Center:

// JOB, PROVIDED BY IPC

// «SUBMITTER'S NAME«,REGIONs200K,CLASSBB,MSGLEVEL«(l,l)

/♦MITID USER.(M123^,5678)

/♦SHI LOW

/»MAIN TIMEs5,LINEStr6

//STEPNAHE EXEC ASM,LEVEL=G,FARM.Cs'LOAD,NODECK,BATCH1

//C.SYSLIB DD DSNAME=USLHPILE.M456a.10113.HACLIB,

// DISP=SHH

//C.SYSIN DD *

student decks

/*

- more control cards to follow, discussed below -

- 67 -

The first four cards are the job and job parameter

cards. The number of cards and Information required here

will vary widely from installation to installation. The

cards shown are included for completeness. The next three

cards shown are included for completeness. The next three

cards are those required when a catalogued procedure such as

the one provided by IBM is available; refer to the Assemblcr(F)

Programmer's Guide [CgS-a^ for further information. The

important point here is that the temporary data set named

&&TEMP must be created, contain the object module output of

the assembler, and be passed to the next job step. Note that

a private macro library, containing the TRACE, TBACEOPP, and

QUIT macros, must be used.

B.3 ■ SIMULATOR INSTRUCTIONS

The complete JCL necessary to run the simulator is:

//STEPSIM EXEC PGM=SIM360,

// PARMs«MAXTIME=10000,MAXCOUNT=i|.000,CARDSs2,PRINTa3,MAXPGEsll«

//STEPLIB DD DSNAME=USERPILE,M^568.10113.LDLIB,DISPaSHR

//SIMLIN DD DSNAME=&&TEMP,DISP=(OLD,DELETE)

//SYSPRINT DD SYSOUT=A

//STRACE DD SYSOUT=A

//SIMPRNT DD SYSOUTSA

//SIMPRN2 DD DUMMY

//SIHPRN3 DD SYSOUT=A

//SIMPRNT DD DUMMY

//SIMPNCH DD DUMMY

//SIMPNC2 DD DUMMY

- 68 -

//SIMPNC3 DD DUMMY

//SIMPNC4 DD DUMMY

//SIMIN DD •

- data cards for simulated reader 00C -

//SIMIN2 DD *

- data cards for reader 012 -

//SIMIN3 DD DUMMY

//SIMIN4 DD DUMMY

The use of the various cards is explained below, after

the discussion of the parameters which may be included in

the FARM" field.

B.3.1 SIMULATOR OPTTOMf;

The PARM= parameter on the EXEC card which invokes

the simulator may contain any combination of the following

options. Defaults assumed by the simulator are underlined;

any error in the parameter field produces a terse diagnos-

tic, and the simulator will not run. It does examine the

entire parameter field for validity,however.

MAXTIMEsn n must be a positive decimal integer

which represents the maximum amount of

simulated real time in milliseconds

which will be allowed to elapse for one

program. Default is 1000, or one second.

- 69 - •

MAXCOUNT=n

MAXPGE=n

n must be a positive decimal Integer

which represents the maximum number of

Instructions which the simulator will

execute for one program. Default Is 500,

n must be a positive decimal Integer

which represents the maximum number of

pages of trace output (printer data set

STRACE) which will be allowed for each

program run. Default Is 5.

The number of Input streams to the sim-

ulator, corresponding to the DD state-

ments labeled SIMIN (corresponding to 1),

SIKIN2 (corresponding to 2), SIMIN3

(corresponding to 3), SIMIN4 (corres-

ponding to 4).1

PUNCH« 0,1,2,3,4 The number of punch output streams to

be used. Corresponding DD statements

are SIMPNCH - SIMPNC4.1

CAHDSs 0,1,2,3,4

Only two 2540 card reader-punches are available In the cur-

rent version of the simulator; the card Input (output)

streams 3 and k are available for expansion.

- 70 -

PRINTS 0,1,2,3,4 The number of print output streams to

be used. Corresponding DD statements

are SIMPRNT - SIMPRN4,

PNCHDESTs PRNI,PNCH If it is desired to print rather than

punch the punch output streams, use'PRNT'

If they are to be punched, use'PNCH1.

The DD cards SIMPNCH - SIMPNC4 must be

corre ö ^oiAdiiic, Jy ad j us ted.

PGMINT« YES,NO If iNO-, then a program interrupt which

occurs after a program interrupt and

before an LPSW instruction is executed

will cause the simulator to print a

diagnostic and terminate the program.

•YES" causes the simulator to ignore

this condition.

THACE= ALL,N0NE If tALLif then every instruction causes

the standard trace message to be

printed. Otherwise, only trace condi-

tions enables dynamically by the program

are printed.

The following options ^re for maintenance and debugging

use only. Note that they can cause many thousands of lines

to go to SYSPRINT.

- 71 -

IQDUMP= 0,1,2,3

TDUMPa 0,1,2 'l' causes the trace queue to be dumped

every time a new trace condition is

enabled. •2' causes a trace queue dump

as for 'l', and In addition on every

occasion when a trace message is printed.

•O" inhibits all trace queue dumps.

'I' causes the interrupt and event

queue „w be dumped each time an I/O

Interrupt occurs. ^ causes the channel

specification block and the I/O speci-

fication block to be dumped after the

initiation of each device operation.

•3' causes both of the above. 'O' is

for no dumps.

The simulator's link-loader module will

print relevant information on programs

loaded and initiation of simulation if

■YES".

Bt1.2 SIMULATOR JCL

//STEPLIB DD DSNAKE« etc.

This defines the «library» which will be searched first to

find SIM360 when the system starts to execute the simulator.

Refer to IBM System/360 Operatic System; Job Control Lflr^AffA

Reference. Form 028-670^.

PDUMP= YES,NO

- 72 -

//SIMLIN DD DSNAME»&&TEMPfDISP"(OLD,DELETE)

This defines the assembler output from the previous step

as the program input to the simulator.

//SYSPHI11T DD SYSOUT-A

In the event of a serious error detected by the simulator

or the operating system, diagnostic information will be

printed on the SYSPRINT data set. This control card is

also used by the maintenance and debugging options of the

simulator (TDUHP=, etc.).

//STHACE DD SYSOUT-A

All trace information generated by the simulator goes to this

data set. Note that the MAXPGE= option may be used to pre-

vent an erroneous program from generating hundreds of pages

of trace output.

//SIMPRNT DD SYSOUT=A

Output to printer 00E goes to the data set defined by this

control card. This card and all following may be punched

as follows if the simulated I/O device is not to be used:

//SIMPRN2 DD DUMMY

Remember that correspondence is required between the PRINT=

option of the simulator and the SIMPRNx control cards

- 73 -

(PRINT=1 implies that only SIMPRNT and printer 00E will

be used; PRINT-2 implies that SIMPRN2 and printer OOP will

be used in addition, etc).

//SIMPRN3 DD SYS0UT=A

This particular simulator run (of an assigned student

machine problem) was using printers 00E and 010, but not

printer OOF or Oil,

//SIMPRN4 DD DUMMY

Not used in this case.

//SIMPNCH DD DUMMY

. //SIMPNC2 DD DUMMY

//SIMPNC3 DD DUMMY

//SIHPNC4 DD DUMMY

No card punches wove used in this example. If a punch

were to b^ used, the corresponding JCL card would normally be

//SIMPNCx DD SYS0UTsB

//SIMIN DD *

This JCL card must be followed by the data cards which are

to be read by the simulated card reader 00C, Note that

because of S:rstem/360 Operating System conventions, none of

- 74 -

these data cards may contain // or /* in colurrr^] ar'i ?

//SIMIN2 DD •

To be followed by cards for simulated reader 012.

//SIMIN3 DD DUMKY

//SIMII!4 DD DÜMHY

The simulator in its current implementation has no device

which uses these data sets, it is recommended, however,

that they be included, since the simulator may attempt to

open the data set if an error occurs in punching the

CARDSs option.

- 75 -

APPENDIX C

GUIDE '.0 MAINTENANCE, MODIFICATION AND REPRCGRAMMING

Because it Is written In PL/I, maintenance or repro-

grammlng of the simulator should be fairly straightforward.

The following discussion will therefore trace the overall

logic and functional behavior of the code, and avoid detailed

description except where necessary,

C.l OVERVIEW

The simulator Is composed of four major modules:

!• SIMLINK - Reads and loads Into virtual core

array the object module (assembler

output). Also does Initial parameter

processing.

2. SIMCPU - Does simulation of CPU functions,

Instruction execution, timer, inter-

rupts. Also does simulation of DMA

data transfers.

3. TRACE - Processes dynamic trace command in-

terpretation and does the processing

and formatting associated with trace

output.

b, SIMIO - ;V s all processing related to I/O

- 76 -

Instructions, CCW's, and the In-

ternal performance of I/O sub-

systems.

In addition to these four major components, there is

a very, small (^2 BAL instructions) assembly language sub-

routine which does simulation of fullword multiplication

and division. This is necessary because these two S/36O

instructions (M and D) require 6^ bits r>f precision and PL/I

does not have this capability,

C,2 MODULE SIMLINK

0,2.1 PABAMETER PROCESSING

This module contains the initial entry point to the

simulator. First the parameters passed to the simulator from

the FAHHs field on the EXEC card are processed. Processing

is very straightforward and is outlined in Figure C-l. Refer

to the Appendix B for further information on parameter key-

words and their effect.

C.2,2 PROGRAM LOADING

When parameter processing is completed, the error switch

is tested and if an error has occurred the program terminates.

Otherwise, some initialization is performed (at the label

RESTRT; see Figure 0-2), and the output data set of the

assembler is implicitly opened and the first card read. Of

the five valid record types produced by the ae^embler, only

1 IBM System/360 Operating System: Assembler(F) PrograraiLer's

Guide, Form C26-3756

- 77 -

(W^UOOP *N

cVsavaXtCr *.tr\yvtt

JUi.

^<^uv\ ^ 0<" COVNYAO^

|_pTOC«Siiü4 K

^^ •■■ ^"^ «• ^« ^_ _• in MJ

S^T^PtetJO^HV

BSa •^*r CJUN «»^

StOu^ eUO^K ^0r

'V^ft^WVXiONEj

Sat TEYtvf Cftofttd

aWtwa

Figure C-l : Parameter Processing
(continued on next page)

- 78 -

fft^wxERft D
Pn«\t err«-

^ftA: ^e.Mv^KEivJOfl.t^

^r «.cco<- «iw'^cV

1 (X. UOLX'V^, Ktuuiwi
/C9»^yy\uoc«M

Ho
->MP(\Kw\E«^j

froct^ acccrAxvkoXu.

r?^Si\V.Oo? J

Figure C-l, continued
(continued on next page)

- 79 -

Valid Keywords

MAXTIME

MAXCOUNT

TRACE

PGMINT

CARDS

PUNCH

PRINT

MAXPGE

PNCHDEST

TDÜMP

IQDUMP

PDUMP

Internal Switches or
Variables Affected

MAXT

MAXI

TSWITCH

PGM_SW

NOINSTR

NOPNSTR

NOPRSTR

MXPGCNT

PPRHTSW

TQDMPSW

CDDMPSW, IQDMPSV;

PDUMPSW

■

.

Figure C-l continued

- 80 -

^rTtrwvAccVe.)

(ktSTRT ^

(^i^TltT^

rrvM tvvov

fbONt J

.-?

(V^AD-XN j

Figure C-2 5 Program Loading
(continued on next page)

J!^

- 81 -

(JR^^,1N ^

Figure C-2 continued
(continued on next page)

.

- 82 -

tMAAOJ&A
%*

(^OtAE) (R^STRT ^

^£ST9J J

Uo

(k^ST^T ")

jk

MÜ^TXN^

•

Figure C-2 continued

- 83 -

three are processed by the assembler; RLD and SYM records

are ignored (without causing an error condition). The ESD

record is used to establish the identifying name of the pro-

gram being simulated. If the conventions for program prepar-

ation outlined in Appendices A and B are followed, this will

be the name (label) on the CSECT card of the program beinf-

simulated. The END record signals the end of the program

and causes the actual simulation process to be initiated. TXT

records supply the text of the program and are loaded into

the virtual core array PROG. This is a one dimensional array

of aligned eight bit elements which is used to represent the

core storage of the simulated computer. Figure C-2 shows

the logical flow of the loading process. Note that if an in-

valid card type is detected or the student program does not

initialize the first eight bytes of core storage (used as the

Initial PSW) the program will not be "executed". Also note

that when the simulation of one program is finished (return

from call to SIMCPU), SIMLINK reinitializes and continues to

load following programs, terminating only when an end of

file condition on the input occurs.

C.3 MODULE SIMCPU

C.3.1 STARTUP AND TNITIALT^ATTOM

On entry to this module various local variables are

initialized, and two calls are made to initialization entry

- 84 -

points In the modules SIMIO and TRACE (SIMIO and SIMTRAS,

respectively). The first operand address is forced to zero

and the LPSW instruction is given control to load the initial

PSW.

C.3.2 INSTRUCTION SIMULATION

Instruction simulation, in itself, is quite straight-

forward. The interpretation and decoding of the instructions

(Figure C-3) is not quite so simple, and the actions taken

after the completion of the simulation of each instruction are

quite complex. Figure C-3 shows the outline of the algorithm

for instruction interpretation; reference should be made,

if necessary, to IBM System/360 Principles of Operation.

Given the information in Figure C-3 and the diagram showing

the accessing scheme for the virtual core array (Figure C-4),

understanding the code which simulates the various instruc-

tions is easy (most instructions involve only four or five

lines of PL/I code).

As shown in Figure C-4, the virtual core array may be

accessed in six ways:

1) As a byte - 8 bit logical value

2) As a halfword - 16 bit logical value

3) As a halfword signed integer in the range

-32768 to 32767

k) As a fullword - 32 bit logical value

- 85 -

^
MSTR.XNTeRP

V\^R\,ft^RX -

3

$

Figure C-3 : Instruction Interpretation

(continued on next page)

- 86 -

\fOsCt., e.i(L«cwVloA I

VX^aAcTXVAe. |

v^e.

Figure C-3 continued
(continued on next page)

- 87 -

Variable Represents

ADDR1

ADDR2

REGX1

REGX2

Address of operand 1 (if present-

RX, SI, RS format)

Address of operand 2 (if present-

SS format)

Valuo of operand 2 (if an immediate

operand) or value of count field

(if SS format)

Rl specification for general purpose

register operand (if RR or RX

format)

R2 specification for general purpose

register operand (RR format)

Figure C-3 continued

■

- 88 -

;;

] j
tf»
^
M m
«^ CO
r-* En

H
'S m
§ CM

P-N
a •»

M s
W o *
P 1^

« 1^
o e
5j s, K

EH Jg M
PC PQ

O

H
CO

J

' i o
3 I
E 3

s.

01

0)
■p
w
•H

4)
(0
o
Pi u
P.

Figure C-4 : Accessing the Virtual Core Array

- 89 -

5) As a fullword signed Integer in the range

-231 to 231-l

6) As a doubleword - 64 bit logical value

The general purpose registers are also represented by

an array (extent 16—-0:15) and are accessed In the same way

tvs 32 bit logical, 31 bits with sign Integer, and 6k bit

logical values. The frequently referenced procedures AL_PR0T

and PHOT check operand locations for boundary alignment

(AL_PR0T only), address tracing requests, and memory pro-

tection violation (see Figure C-5),

0.3.? POST-INSTRUCTION PROCESSING

After the execution of each instruction, and before

Interpreting the next instruction, the simulator must check

for a variety of conditions, and perform the necessary

processing associated with the conditions found.

C.3.3.1 TIMER UPDATING AND INTERRUPT SCHEDULING

The label ND (very rarely ND2) is the point where post

instruction processing begins. The i struction count is

updated (and checked against the allowed maximum), and the

simulated real time (RJTIME) is updated by the execution time

of the instruction just completed (nominally; value of temp

TIME), Then the timer counter (TJPIME) is updated and a

check is made to see if 3333 microseconds or more (virtual

time) have elapsed since the timer was last decremented. If

this condition exists, then the simulated timer (fullword at

location 80) is decremented by an appropriate amount, and, if

- 90 -

c ?ftOT

$
WD^JUtteP

Vfe/mTTivIp^

r R^VCVA)

Figure C-5 : Alignment and Protection Checking

. .. i . .i*

-. 91 -

the timer has gone from a positive to a negative value as

a result, appropriate interrupt processing is done. If

the system mask allows external Interrupts (bit 7 = 1)

then the interrupt is taken immediately,; if external in-

terrupts are masked off, the Interrupt is scheduled to

occur as soon as the external Interrupt mask bit is set to

allow the interrupt.

C.3.3.2 SEAflCH FOB INTERRUPT

When timer processing is completed, the Interrupt and

event queue is searched to see if any pending (or previously

masked off) Interrupt or event is due to occur. An event

occurs when its scheduled time (in the queue entry) is less

than or equal to the elapsed virtual time in the simulation.

However, an event due to occur in time may not take place,

because, for example, it is a timer interrupt and the exter-

nal interrupt mask bit is zero. An event which is not an

Interrupt might be the transfer of a byte to or from core

storage by a channel in the' process of data transfer, or

the occurrence of a device end for an operation initiated

by a channel command word with the command chaining bit on.

Figure C-6 shows the outline of this process. Note that the

Interrupt and event queue is maintained in sorted order by

scheduled time of occurrence, and that masked Interrupts are

simply left at the head of the queue, and thus will be

- 92 -

G*D CüüD
r
i

±

a

(s^rt^T)

(NO,TNT)

^)cc\-V feV.tU ^roctssi\yva—

Figure C-6 : Interrupt and Event Processing
(continued on next page)

- 93 -^

4ftCU .XUT ")

Figure C-6 continued
(continued on next page)

- 93 - ^

j ted«, \oauls |\

^D
9SW VocccVvovs

TwttjTpscöj

(cjore. »Acvit«.

AlViCe -> cere)

C(Ül tV£NT

£
(Nbx ^

bO^tVENT

c w>x J

)

Figure C-6 continued

•

94 -

examined every time the queue is searched. As shown in the

figure, if an interrupt or event occurs, the post instruc-

tion processing section of the simulator is re-entered at

the timer processing point (effectively the start of the

section). This is because time is required for an interrupt

or event to take place, and thus the elapsed time must be

again updated, and a possible timer interrupt checked for.

C.3.3.3 WAIT STATE PROCESSING

As shown in Figure C-6, if no interrupt or event takes

place, then the wait/run state bit of the CPU is checked.

If the CPU is in the run state, the instruction interpre-

tation code is invoked and the simulator continues. If

the processor is in the wait state, then a somewhat clumsy

and hard to follow section of code attempts to find the

next point in t*me when an event will .occur and possibly

cause processing to continue. Candidate events are a timer

Interrupt or some type of I/O interrupt or event. If the

simulator cannot determine that there exists such an event,

then the simulation is terminated and an error message is

printed,

C.3.3.4 PROGRAM IWTEBRUPTS

Program interrupts fall outside of the structure

outlined above. Most program interrupts cannot be masked,

and those which can be masked do not remain pending until

y::,:^-^:.,', ^""-V-.

- 95 -

enabled; they are completely ignored. Therefore a special

section of code handles detected program exceptions. This

routine sets the appropriate interrupt code in the program

old PSW (simulated core location ^0), and after appropriate

processing goes to the label TAKE^I in Figure C-6. The

appropriate processing may include completing an arithmetic

operation in which overflow was detected or perhaps detect-

ing that the program exception which occurred was masked

off, and ignoring it altogether.

CA MODULE SIMIO

This module has six separate entry points to perform

different functions related to I/O. The entry points are:

SIMIO Initialize the ccntrol blocks and data sets

associated with I/O device simulation,

SIMIOT Called to clean up I/O simulation on ter-

mination of program being simulated. Closes

data sets, flushes buffers, etc.

Performs processing associated with the

HIO instruction.

Implements the SIO instruction. Initiates

appropriate device activity as specified by

the CCW and the state of the I/O subsystem.

Simulates the TIO instruction by examining

the state of the simulated I/O subsystem

HALTIO

STARTIO

TESTIO

,.■.., „f^ .r.T...v; ■..-IV-^W

- 96 -

and the specified device, and appropriately

setting the condition code and the statue

portion of the channel status word.

EVENT Performs the processinp associated with the

occurrence of an I/O event.

Before attempting to understand the functioninr of the

I/O simulation module, it is extremely important to under-

stand in detail the oper-öXiOrt Of- uhe S/36O I/O subsystems.

Because the S/36O can accoraodate an extremely vjide ranre of

J/0 devices and because the I/O capabilities of the 36O

are very "powerful", I/O operations are quite complex and

difficult to understand, and the occurrence of subtleties

and exceptions is quite frequent. Therefore, the main-

tenance programmer who is not very familiar with S/36O

I/O Is encouraged to carefully study the I/O section of Prlr.clples

of Onerations1 in conjunction with this guide and the program

listing of SIMIO.

C.^.l I/O INITIALIZATION

As mentioned In section C,3.1, one of the first

steps in Initialization for simulation is to call the

1 IBM Systera/360 Operet.J^ System: Principles of Operation,

Form A22-6821

■'"rvvrrr^w ■--'7*?*

- 97 -

Initialization entry point SIMIO in the I/O simulation

module. Initialization is quite straightforward. All

channels and devices are put in the available state, printer

and card punch data sets are opened and identifying headers

are written, and a few entries in the device specification

blocks are initialized to put the system in a clean, ready

for operation state,

C.4.2 I/O TERMINATION

The I/O termination function simply checks to see if

any data is contained in the device specification blocks

which has been output br the program being simulated, but

has not yet been written to the appropriate print or punch

data set. If there is any such data, it is punched or printed,

C,^,V HALT I/O INSTRUCTION

The entry point HALTIO, in simulating the HIO in-

struction, first checks whether or not the addressed channel

is operating in burst mode. If the channel is so operating

then the device with which the channel is communicating is

determined, the data transfer operation is terminated, and

appropriate interrupts are scheduled. If the channel is

available, then the addressed device is found and its stvite

examined. If the addressed device is working, then any

data transfer in progress (there may be data transfer in

progress on the multiplexor channel without being in burst

- 98 -

mode) is terminated, and all interrupts which would normally

occur due to device operation are scheduled to occur (with

appropriate changes to reflect the HIO). The condition

code is set. and the simulation of the HIO is completed.

Figure C-7 shows the operation of this routine.

CAA TEST I/O TNSTRUCTIQN

The entry point TESTIO first checks for the channel

working state (burst operation), and, if found, sets the

condition «ode appropriately {.io2) and returns. Otherwise,

the addressed device is found and examined. If the device

is available, the condition code is set (002) and a return

to caller is executed. If the device is in the interrupt

pending state, then the CSW information associated with the

interrupt is stored, the interrupt is cleared, and the

condition code is set to 01z (CSW stored). If the device

is working, the busy bit is set in the stored CSW, and the

condition, code is set to Ola. See Figure C-8 for further

information.
*

C.4.5 START T/n

Upon entry to the START 10 routine the channel and

device are checked for availability. If one or the other is

not available, action very similar to that of TESTIO for

the corresponding situation is taken. If both the charm«!

and device are available, the channel interpretation code

...._ .

- 99 -

Co4«. = 0\x

cc«Vro\ UAV'V

CoyJL\V\C>N
Cede - 00.

^cV.

froareSS

coclc - ^0^

I
(Kc\^^) (Rt^f^ j

■

Figure C-7 ■. Simulation of HALT I/O

- 100 -

tC*oVx

its CoyNdL\\\CA

^ReWtyx ^

SeS CC-00^ -^RtWryr» J

^."Vorc CSU)

f R^v*.ryv)

Figure C-8 : Simulation of TEST I/O

- ,,

- 101 -

is entered,

Channel interpretation starts by ohockinp; UKJ channel

addre-s word (location 72) for validity, and, if valM,

setting the protection key and the CCW addren.-i. The channo]

command word location is checked against the key for fetch

protection, and if no protection error is found, the CCW

is fetched and the CCW address is updated. The CCW ir; firr;t

checked to see if it is a TIG (transfer in channel), ir

it is, then some validity checks are performed on the command

and its occurrence (i.e., a TIC cannot start a command

chain). If invalid, appropriate action is taken, and if

valid the CCW address is set to the address given in the

TIC, The channel interpretation code is reentered at the

point where the next CCW is fetched (see Figure C-9).

If the channel command word is not a TIC, then it is

checked for validity. If valid, the PCI (program controlled

interrupt) flag is examined, and if set, an interrupt is

scheduled. Then the various fields of the CCW are extracted

and the chain data flag from the previously executed CCW

is examined. If chain data is on, the parameters of the

data transfer in progress are updated with the data from

the new CCW, and the data transfer is continued (note that

this particular action cannot result from a start I/O—

no previous CCW—but only from an event; see section C.4.6).

- 102 -

Set oroarcw

ccso\x

mSufiS^

f ^d^uLYW j

Ct-V CCU).

•

^e-t XVCUIA CCLü
^ R<Xvxrw ^

S^S ^H-tNT.UJOp)

(^wT^)

fe

C«JB dUvic«,

(CDTSCTJ

Figure C-9 : Channel Interpreter

($«X^T*\ j

- 103 -

■

If there Is no data chaining from the previous CCW, then a

processing routine for the specific device is called to

initiate the operation specified by the CCW,

C>4.6 I/O EVENTS

There are three different types of I/O events. Two

are data transfer events, and their occurrence is marked

by the transfer of one or more bytes from virtual core

storage to a simulated device, or vice versa. The re-

maining event type is associated with the occurrence of

a channel end or device end condition which arises in the

process of an input or output operation. Since the ter-

mination of data transfer sometimes (on a multiplexor

channel, for example) causes a channel end condition, a

data transfer event is acted upon exactly as a normal

(third type discussed above) event when the last byte of

data specified by the operation has been transferred

(see Figure C-6). All three event ty^ss are kept in the

interrupt and event queue in sorted order by time of

occurrence. They are placed in the queue by the device

processing routines and contain information that reflects

the characteristics of the device and the operation being

performed. Figure C-10 shows the PL/I declaration of an

entry in the interrupt or event queue, with comments ex-

plaining the items.

• to* -

DECLARE

1 INT_Q BASED{P_CI),

2 PREV.I POINTER,

2 .NEXT_I POINTER,

2 TIMEJE DEC FLOAT,

2 PJ}EV_DATA POINTER,

2 E_CH POINTER,

2 EJ)EV POINTER,

2 TIME_IKTRVL DEC FLOAT,

2 TYPE_I FIXED BIN(15),

2 CODE_I BIT(16) ALIGNED,

2 CSW_I BIT(64) ALIGNED,

2 CORE_INDEX FIXED BIN(15),

2 DEVJENDEX FIXED BIN(15),

2 DATA_COUNT FIXED BIN(15),

/*NULL IF FIRST ENTRY IN

QUEUE*/

/*NULL IF LAST ENTRY*/

/^SCHEDULED TIME OF

OCCURRENCE*/

/«LOCATES DATA AT THE DEVICE*/

/«IDENTIFIES ASSOCIATED

CHANNEL*/

/«IDENTIFIES ASSOCIATED

DEVICE*/

/*FOR DATA TRANSFER EVENTS-

TIME BETWEEN BYTE TRANSFERS*/

/»NEGATIVE FOR EVENTS*/

/*DEVICE ADR. FOR PSW*/

/*CSW ASSOCIATED W/

INTERRUPT OR EVENT*/

/*CORE LOCATION FOR NEXT

BYTE TRANSFER*/

/»IDENTIFIES NEXT BYTE

TRANSFER AT THE DEVICE*/

/*NO. OF BYTES TO BE TRANS

FERRED*/

Figure C-IO : Interrupt and Event Queue Entries
(continued on next page)

- 105 -

2 IKCREM FIXED BIN(15),

2 CH.STAT CHARd),

2 pEV__STAT GHAR(l),

2 MASK_I BIT(8) ALIGNED,

2 I0_PR0T BIT(4) ALIGNED;

/»NEGATIVE FOR READ

BACKWARD*/

/*A,I, OR W. STATUS AFTER

OCCURRENCE«/

/«LIKEWISE FOR DEVICE*/

/*.AMD. W/ SYSTEM KASK TO

SEE IF INTERRUPT ENABLED*/

/«PROTECTION KEY ASSOCIATED

WITH OPERATION*/

Figure C-IO continued

..

- 106 -

The event processing routine (EVENT in SIMIO) handles

only normal events (data transfers are done in SIMCPU;

see section C.3.3.2). Upon entry to the r utine the channel

and device involved in the operation associated with the

event are determined (using E_CH and E_DEV, Figure C-10)

and the status bits of the CSW associated with the event

are examined for unusual status (usually an error). If

there is unusual status then any chaining in effect is

cancelled, and an interrupt is scheduled to notify the

program of the unusual condition. In the absence of un-

usual status, the status bits of the CSW are tested for

device end. Upon device end, and data if chaining is

present, the channel interpretation loop is entered

(CHJINT_L00P, Figure C-9). If command chaining is on

from the previous queue, then the event Is deleted from

the queue, and the channel interpretation loop is entered.

If there is no chaining, then the event is changed to an

interrupt (to occur immediately, if enabled) and a return

is made. If the event is not a device end, then if data

chaining is on,the channel interpretation loop is entered.

If command chaining is on, the event is deleted from the

queue and otherwise ignored; in the absence of chaining,

an interrupt is scheduled as above. See Figure C-ll for

further detail.

IS*:«

- 107 -

(CH.tNT. LOop^)

Figure C-ll : Event Processing

■

« 108 -

;\.

C.^.7 DEVICE SIMULATION ROUTIUES

The details of the simulation "of an- I/O operation to

a given device are handled by a set of routines, one for

each class of devices (see section C.,4»^ and Figure C-9).

Each individual device is defined by ^device specification

block (DSB) which contains all necessary information about

the device and its current state; one piece of this in-

formation identifies the particular device routine which is

used in simulating the device. The device routines decode

the command byte from the CCW and initiate appropriate

action. Entries are placed in the interrupt and event queue

as necessary. Any necessary I/O operations are performed, as

in the case of a simulated card reader where an input data

set of the simulator supplies the "cards" for the simulated

reader. All relevant command information is checked for

validity and proper sequence (there are invalid command

sequences on many devices), and appropriate error action is

taken if an anomaly is detected. Since these routines vary

widely in form with the device simulated, an example of

such a routine is shown in some detail in Figure C-12, but

no attempt will be made to explain in detail the functioning

of each such routine. The appropriate reference manual for

a device will provide detailed information on its performance,

and a complete understanding of the behavior of the device

- 109 -

fC-OVTAVAOLwJl

C,<A C£iu) speaks

I

Retv M-TA 3

UJor^\wa «.-VaJte

^ict \t\Cc\-rec-\-

Figure C-12 : RPS Conmand to Card Reader
(continued on next page)

r
- 110 -

[CCUJ cou^ Vvadl '

r R^ticr^ j

F^.o-ure C-12 continued

s

- Ill -

will tend to lead to an understanding of the device simulation

routine,

C.5 TRACE MODULE

There are 9 entry points to this module, two to pro-

cess dynamic trace requests by the simulated program, and

6 to do the formatting and printing associated with a trace

message. The entry points are:

TRACE - enables a trace condition in accordance with

information supplied in the trace request

N0_THAS - turns off any existing trace conditions of

the type specified

BTRACE - called to do printing associated with a branch

trace

ITRACE - called to do an instruction trace

NTRACE - called to do an interrupt trace

ADTRAS - called to do an address trace

ETHACE . called to do an execution trace

CTRACE - called to do a channel trace

SIMTRAS - initializes for simulation

- t12 -

The processing done by the TRACE module is not particularly

Interesting or difficult to understand. With a few excep-

tions, it consists of gettinfi; such and such a field to

print in character position n, and thus is painfully de-

tailed but conceptually unchallenging. Discussion will

therefore be brief,

C.5.1 DYNAMIC TRACE REQUESTS

A trace request extracts information compiled into

the program code by the T^ace macro instruction, checks

it for validity, and makes an entry in the trace queue,

a list of enabled trace conditions, Figure C-13 shows the

data format in the program code, and Figure C-14 gives the

PL/I structure declaration of an entry in the trace queue.

The transformation from one to the other is almost one for

one, and quite obvious. One item of Interest is that if

Invalid data is found in a trace request, It is assumed

that the program being simulated has erroneously modified

Instruction locations. In this case, an attempt is made to

find the end of trace request flag, and If it can be found,

the Invalid trace request is Ignored; otherwise, an op-

eration exception (program Interrupt for Invalid op-code)

is taken. There«, is a separate routine to process each

type of trace request, but they are very small (about five

PL/I statements) and are necessary only because a different

- 113 -

DS OH ALIGN ON HALPUORD BOUNDARY

DC X'02' TRACE OP-CODE

DC X'On« TRACE TYFE:

* 0: BRANCH

• 1: INSTRUCTION

«
2: ADDRESS

*
3: INTERRUPT

*
4: EXECUTION

«
5: CHANNEL

«
6: UNUSED

«
7: UNUSED

«
8: DUMP

DC XL2,id« ADDRESS,OPCODE,INT.TYPE »ETC.

DC 612'status bit SWlfcftVlflR • RTT QUTTPITTTC W

STATUS DUMPS.

DC BL2'register bit switches«

»FOLLOWING PAIRS ARE CORE DUMP SPECIFICATIONS

DC Y(address) FIRST ADDRESS TO BE DUMPED

DC ALl(n,s) n ■ NUMBER OP WORDS DUMPED

* s = Indirect rwltch

«THERE KAY BE UP TO EIGHT PAIRS, TERMINATED BY THE

»FOLLOWING SENTINEL.

DC XL2«8000» TERMINATOR

Figure C-13 : Trace Macro Data

- 114

DECLARE

1 TRACE_LIST BASED(PJJ),

2 PREV POIIiTER,

' 2 NEXT POINTER,

2 TYPE FIXED BIN(15),

2 ID BIT(16) ALIGNED,

2 STATUS BIT(16) ALIGNED,

2 REGS BIT(16) ALIGNED,

2 DUKP_OPTIONS(8),

3 ADDRESS FIXED BIN(15),

3 DCCUNT FIXED BIN(15);

Figure C-l^. : Trace Queue Entries

■

-115-

internal indicator for each trace type is used to Indicate

that a trace condition is enabled.

A Traceoff command is processed at entry point NOJTBAS,

and simply removes from the trace list the particular in-

stance of the trace type specified, or, if ALL of the riven

type were specified, then every instance.

C.5.2 TRACE OUTPUT ROUTINES

The six entry points associated with trace output

all do very much the same thing. The trace list is searched

for the entry associated with the trace condition. Kote

that because the Traceoff command only removes the entry

from the trace list, the internal indicator which flags a

trace condition may still be set. In this case, when the

list is searched, no corresponding entry will be found, and

the output routine will then reset the internal indicator

and return. In the more normal case, where an entry is

found in the trace list, then a call is made to an internal

procedure (TDUMP) which formats and prints the trace out-

put as specified by the information in the trace queue

entry.

It should be noted that the snapshot (DUMP) type is

something of an exception. Because the dynamic trace re-

quest is, in effect, the trace condition in this case, a

slightly different sequence of events results. However,

■

examination of the code will show that no difficulties are

involved. Usinß existing code and procedures, a DUMP

trace request:

- sets up an entry in the trace list in the normal way

- calls TDUMP in the normal way to print the informa-

tion requested

- enters the NCJTHAS routine in an appropriate place

to delete from the trace list the entry created in

the first step above

- returns to caller (SIMCPU).

- 117 -

BIBLIOGRAPHY

CMS Program Logic Manual, Form GY28-0591,

T^t^0J,frogram"67/Can,brldSe Monitor System User's Guide - IBM Publication.

CP-67,Program Logic Manual, Form GY20-0590.

SASD^ForrGAal^Sr6^ DeSCriptions " 2841 and Associated

rf!LSySiem/3nn^Pt^lns system: Assembler(P) Programmer's Guide, Form GC26-3756,

GC28-?5l4m/360 0peratin6 system; Assembler Language, Form

IBM System/360 Operating System: Job Control Lariüage
Reference, Form GC28-670^.

IBM System/360 Operating System: Job Control Language
User's Guide, Form GC28-6703.

PormSGC28!'6538 0perating systen,: Linkage Editor and Loader,

IBM System/360 Operating System: Linkage Editor(F) Program
Logic Manual, Form GY28-6667, '

IBM System/360 Operating System: Loader Program Logic
Manual, Form GY28-6714. B

IBM System/360 Operating System: PL/I Language Reference
Manual, Form GC28-8201,

IBM System/360 Operating System: PL/I(F) Programmer's
Guide, Form GC28-659^,

IBM System/360: Principles of Operation, Form GA22-6821.

GA22%llT./370 KOdel 155 Functional Characteristics, Form

IBM System/370: Principles of Operation, Form GA22-7000.

IBM 2821 Control Unit: Component Description, Form A2^-3312,

■

